431 resultados para immunomodulatory
Resumo:
Propolis is a beehive product used in traditional medicine due to its biological properties. It shows a complex chemical composition including phenolics, such as cinnamic acid (Ci). The mechanisms of action of propolis have been the subject of research recently; however, the involvement of Ci on propolis activity was not investigated on immune cells. Ci effects were evaluated on human monocytes, assessing the expression of Toll-like receptors (TLRs), HLA-DR, and CD80. Cytokine production (TNF-α and IL-10) and the fungicidal activity of monocytes were evaluated as well. Data showed that Ci downregulated TLR-2, HLA-DR, and CD80 and upregulated TLR-4 expression by human monocytes. High concentrations of Ci inhibited both TNF-α and IL-10 production, whereas the same concentrations induced a higher fungicidal activity against Candida albicans. TNF-α and IL-10 production was decreased by blocking TLR-4, while the fungicidal activity of monocytes was not affected by blocking TLRs. These results suggest that Ci modulated antigen receptors, cytokine production, and the fungicidal activity of human monocytes depending on concentration, and TLR-4 may be involved in its mechanism of action. Ci seemed to be partially involved in propolis activities. © 2013 Bruno José Conti et al.
Resumo:
The antileishmanial and immunomodulatory effects of propolis collected in Botucatu, São Paulo State, Brazil, were evaluated in Leishmania (Viannia) braziliensis experimental infection. The antileishmanial effect of propolis on promastigote forms was verified by reducing growth and by promoting morphologic alterations observed by scanning electron microscopy. In in vitro immunomodulatory assays, macrophages were pretreated with propolis and then infected with L. (V.) braziliensis. In vivo, supernatants from liver cells and peritoneal exudate of BALB/c mice pretreated with propolis and infected with Leishmania (107/mL promastigotes) were collected, and TNF- α and IL-12 were measured by ELISA. Macrophages incubated with propolis showed a significant increase in interiorization and further killing of parasites. An increased TNF- α production was seen in mice pretreated with propolis, whereas IL-12 was downregulated during the infection. In conclusion, Brazilian propolis showed a direct action on the parasite and displayed immunomodulatory effects on murine macrophages, even though the parasite has been reported to affect the activation pathways of the cell. The observed effects could be associated with the presence of phenolic compounds (flavonoids, aromatic acids, and benzopyranes), di- and triterpenes, and essential oils found in our propolis sample. © 2013 Suelen Santos da Silva et al.
Resumo:
A possible immunomodulatory/anti-inflammatory effect of Baccharis dracunculifolia (Bd) and its major compound - caffeic acid (Ca) - on cytokines production (IL-1b, IL-6 and IL-10) by murine macrophages was investigated. Cells were incubated with Bd and Ca, and the inhibitory concentrations were tested before or after macrophages challenge with LPS. Bd and Ca stimulated IL-1b and inhibited IL-6 and IL-10 production. In LPS-challenge protocols, Bd prevented LPS action either before or after LPS challenge, whereas Ca prevented LPS effects only after LPS addition. Bd modulatory action on cytokines production may be at least in part mediated by Ca, since it has been shown to inhibit the transcription factor NF-kB. Further studies are still needed to evaluate Bd efficacy in inflammatory diseases, in order to explore its antiinflammatory activity in vivo. © 2013 Taylor & Francis.
Resumo:
ObjectivesIn traditional medicine, plants have formed the basis of sophisticated systems that have been in existence for thousands of years and still provide mankind with new remedies. Cymbopogon martinii, known as palmarosa, has been used in aromatherapy as a skin tonic due to its antimicrobial properties. It has also used in Ayurvedic medicine for skin problems and to relieve nerve pain. The immunomodulatory action of C.martinii essential oil (EO) and geraniol was evaluated regarding the production of pro- and anti-inflammatory cytokines (tumour necrosis factor (TNF)- and IL-10, respectively) by human monocytes in vitro.MethodsMonocyte cultures were incubated with EO or geraniol. After 18h, cytotoxicity assays were performed using 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide method, and cytokine production was determined by ELISA.Key findingsThe variables showed no cytotoxic effects on monocytes. TNF- production was not affected by C.martinii and geraniol, and only the concentration of 5g/ml of C.martinii stimulated its production. On the other hand, all concentrations of C.martinii and geraniol increased IL-10 production by human monocytes.ConclusionsData showed that noncytotoxic concentrations of EO and geraniol exerted an anti-inflammatory action by increasing IL-10 production; moreover, geraniol seemed to be probably responsible for EO immunomodulatory activity in our assay condition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Immunomodulatory effects of low dose chemotherapy and perspectives of combanation with immunotherapy
Resumo:
Nowadays cancer is one of the main causes of death and many efforts worldwide have been driven to find out new treatments and approaches in order to extinguish or reduce this group of disorder. Chemotherapy is the main treatment for cancer, however, conventional schedule based on maximum tolerated dose (MTD) show several side effects and frequently allow the development of drug resistance. In this review we present the evidence that metronomic chemotherapy, based on the frequent administration of low or intermediate doses of chemotherapeutics is as efficient as MTD and works better in some situations. Finally, we present some data indicating that noncytotoxic concentrations of antineoplastic agents are able to both up-regulate the immune system and increase the susceptibility of tumor cells to cytotoxic T lymphocytes. Taken together, data from the literature provide us the evidence that low concentrations of selected chemotherapeutics agents, rather than conventional high doses, should be chosen for combination with immunotherapy
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives The extract and essential oil of clove (Syzygium aromaticum) are widely used because of their medicinal properties. Eugenol is the most important component of clove, showing several biological properties. Herein we have analysed the immunomodulatory/anti-inflammatory effect of clove and eugenol on cytokine production (interleukin (IL)-1 beta, IL-6 and IL-10) in vitro. Methods Macrophages were incubated with clove or eugenol (5, 10, 25, 50 or 100 mg/well) for 24 h. Concentrations that inhibited the production of cytokines were used before or after incubation with lipopolysaccharide (LPS), to verify a preventive or therapeutic effect. Culture supernatants were harvested for measurement of cytokines by enzyme-linked immunosorbent assay. Key findings Clove (100 mg/well) inhibited IL-1 beta, IL-6 and IL-10 production and exerted an efficient action either before or after LPS challenge for all cytokines. Eugenol did not affect IL-1 beta production but inhibited IL-6 and IL-10 production. The action of eugenol (50 or 100 mg/well) on IL-6 production prevented efficiently effects of LPS either before or after its addition, whereas on IL-10 production it counteracted significantly LPS action when added after LPS incubation. Conclusions Clove exerted immunomodulatory/anti-inflammatory effects by inhibiting LPS action. A possible mechanism of action probably involved the suppression of the nuclear factor-kB pathway by eugenol, since it was the major compound found in clove
Resumo:
The number of organ and tissue transplants has increased worldwide in recent decades. However, graft rejection, infections due to the use of immunosuppressive drugs and a shortage of graft donors remain major concerns. Carbon monoxide (CO) had long been regarded solely as a poisonous gas. Ultimately, physiological studies unveiled the endogenous production of CO, particularly by the heme oxygenase (HO)-1 enzyme, recognizing CO as a beneficial gas when used at therapeutic doses. The protective properties of CO led researchers to develop uses for it, resulting in devices and molecules that can deliver CO in vitro and in vivo. The resulting interest in clinical investigations was immediate. Studies regarding the CO/HO-1 modulation of immune responses and their effects on various immune disorders gave rise to transplantation research, where CO was shown to be essential in the protection against organ rejection in animal models. This review provides a perspective of how CO modulates the immune system to improve transplantation and suggests its use as a therapy in the field.
Resumo:
Components of high molecular-weight (PI) obtained from Ascaris suum extract down-regulate the Th1/Th2-related immune responses induced by ovalbumin (OVA)-immunization in mice. Furthermore, the PI down-modulates the ability of dendritic cells (DCs) to activate T lymphocytes by an IL-10-mediated mechanism. Here, we evaluated the role of toll like receptors 2 and 4 (TLR2 and 4) in the modulatory effect of PI on OVA-specific immune response and the PI interference on DC full activation. An inhibition of OVA-specific cellular and humoral responses were observed in wild type (WT) or in deficient in TLR2 (TLR2(-/-)) or 4 (TLR4(-/-)) mice immunized with OVA plus PI when compared with OVA-immunized mice. Low expression of class II MHC, CD40, CD80 and CD86 molecules was observed in lymph node (LN) cells from WT, TLR2(-/-) or TLR4(-/-) mice immunized with OVA plus PI compared with OVA-primed cells. We also verified that PI was able to modulate the activation of DCs derived from bone marrow of WT, TLR2(-/-) or TLR4(-/-) mice induced in vitro by agonists of TLRs, as observed by a decreased expression of class II MHC and costimulatory molecules and by low secretion of pro-inflammatory cytokines. Its effect was accompanied by IL-10 synthesis. In this sense, the modulatory effect of PI on specific-immune response and DC activation is independent of TLR2 or TLR4.