967 resultados para immune systems
Resumo:
The immune system provides a rich metaphor for computer security: anomaly detection that works in nature should work for machines. However, early artificial immune system approaches for computer security had only limited success. Arguably, this was due to these artificial systems being based on too simplistic a view of the immune system. We present here a second generation artificial immune system for process anomaly detection. It improves on earlier systems by having different artificial cell types that process information. Following detailed information about how to build such second generation systems, we find that communication between cells types is key to performance. Through realistic testing and validation we show that second generation artificial immune systems are capable of anomaly detection beyond generic system policies. The paper concludes with a discussion and outline of the next steps in this exciting area of computer security.
Resumo:
Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDSs rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.
Resumo:
We outline initial concepts for an immune inspired algorithm to evaluate and predict oil price time series data. The proposed solution evolves a short term pool of trackers dynamically, with each member attempting to map trends and anticipate future price movements. Successful trackers feed into a long term memory pool that can generalise across repeating trend patterns. The resulting sequence of trackers, ordered in time, can be used as a forecasting tool. Examination of the pool of evolving trackers also provides valuable insight into the properties of the crude oil market.
Resumo:
The role of T-cells within the immune system is to confirm and assess anomalous situations and then either respond to or tolerate the source of the effect. To illustrate how these mechanisms can be harnessed to solve real-world problems, we present the blueprint of a T-cell inspired algorithm for computer security worm detection. We show how the three central T-cell processes, namely T-cell maturation, differentiation and proliferation, naturally map into this domain and further illustrate how such an algorithm fits into a complete immune inspired computer security system and framework.
Resumo:
Abstract. The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we collate the algorithms used, the development of the systems and the outcome of their implementation. It provides an introduction and review of the key developments within this field, in addition to making suggestions for future research.
Resumo:
As introduced by Bentley et al. (2005), artificial immune systems (AIS) are lacking tissue, which is present in one form or another in all living multi-cellular organisms. Some have argued that this concept in the context of AIS brings little novelty to the already saturated field of the immune inspired computational research. This article aims to show that such a component of an AIS has the potential to bring an advantage to a data processing algorithm in terms of data pre-processing, clustering and extraction of features desired by the immune inspired system. The proposed tissue algorithm is based on self-organizing networks, such as self-organizing maps (SOM) developed by Kohonen (1996) and an analogy of the so called Toll-Like Receptors (TLR) affecting the activation function of the clusters developed by the SOM.
Resumo:
Abstract. We combine Artificial Immune Systems (AIS) technology with Collaborative Filtering (CF) and use it to build a movie recommendation system. We already know that Artificial Immune Systems work well as movie recommenders from previous work by Cayzer and Aickelin ([3], [4], [5]). Here our aim is to investigate the effect of different affinity measure algorithms for the AIS. Two different affinity measures, Kendall's Tau and Weighted Kappa, are used to calculate the correlation coefficients for the movie recommender. We compare the results with those published previously and show that that Weighted Kappa is more suitable than others for movie problems. We also show that AIS are generally robust movie recommenders and that, as long as a suitable affinity measure is chosen, results are good.
Resumo:
INTRODUCTION In recent years computer systems have become increasingly complex and consequently the challenge of protecting these systems has become increasingly difficult. Various techniques have been implemented to counteract the misuse of computer systems in the form of firewalls, antivirus software and intrusion detection systems. The complexity of networks and dynamic nature of computer systems leaves current methods with significant room for improvement. Computer scientists have recently drawn inspiration from mechanisms found in biological systems and, in the context of computer security, have focused on the human immune system (HIS). The human immune system provides an example of a robust, distributed system that provides a high level of protection from constant attacks. By examining the precise mechanisms of the human immune system, it is hoped the paradigm will improve the performance of real intrusion detection systems. This paper presents an introduction to recent developments in the field of immunology. It discusses the incorporation of a novel immunological paradigm, Danger Theory, and how this concept is inspiring artificial immune systems (AIS). Applications within the context of computer security are outlined drawing direct reference to the underlying principles of Danger Theory and finally, the current state of intrusion detection systems is discussed and improvements suggested.
Resumo:
Artificial Immune Systems have been used successfully to build recommender systems for film databases. In this research, an attempt is made to extend this idea to web site recommendation. A collection of more than 1000 individuals' web profiles (alternatively called preferences / favourites / bookmarks file) will be used. URLs will be classified using the DMOZ (Directory Mozilla) database of the Open Directory Project as our ontology. This will then be used as the data for the Artificial Immune Systems rather than the actual addresses. The first attempt will involve using a simple classification code number coupled with the number of pages within that classification code. However, this implementation does not make use of the hierarchical tree-like structure of DMOZ. Consideration will then be given to the construction of a similarity measure for web profiles that makes use of this hierarchical information to build a better-informed Artificial Immune System.
Resumo:
Abstract. Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system. Research into this family of cells has revealed that they perform the role of coordinating T-cell based immune responses, both reactive and for generating tolerance. We have derived an algorithm based on the functionality of these cells, and have used the signals and differentiation pathways to build a control mechanism for an artificial immune system. We present our algorithmic details in addition to some preliminary results, where the algorithm was applied for the purpose of anomaly detection. We hope that this algorithm will eventually become the key component within a large, distributed immune system, based on sound immunological concepts.
Resumo:
The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we review the algorithms used, the development of the systems and the outcome of their implementation. We provide an introduction and analysis of the key developments within this field, in addition to making suggestions for future research.
Resumo:
A combined Short-Term Learning (STL) and Long-Term Learning (LTL) approach to solving mobile robot navigation problems is presented and tested in both real and simulated environments. The LTL consists of rapid simulations that use a Genetic Algorithm to derive diverse sets of behaviours. These sets are then transferred to an idiotypic Artificial Immune System (AIS), which forms the STL phase, and the system is said to be seeded. The combined LTL-STL approach is compared with using STL only, and with using a handdesigned controller. In addition, the STL phase is tested when the idiotypic mechanism is turned off. The results provide substantial evidence that the best option is the seeded idiotypic system, i.e. the architecture that merges LTL with an idiotypic AIS for the STL. They also show that structurally different environments can be used for the two phases without compromising transferability.
Resumo:
Biologically-inspired methods such as evolutionary algorithms and neural networks are proving useful in the field of information fusion. Artificial immune systems (AISs) are a biologically-inspired approach which take inspiration from the biological immune system. Interestingly, recent research has shown how AISs which use multi-level information sources as input data can be used to build effective algorithms for realtime computer intrusion detection. This research is based on biological information fusion mechanisms used by the human immune system and as such might be of interest to the information fusion community. The aim of this paper is to present a summary of some of the biological information fusion mechanisms seen in the human immune system, and of how these mechanisms have been implemented as AISs.
Resumo:
The evolution of CRISPR–cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR–cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR–Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized.