881 resultados para image texture analysis
Resumo:
Texture image analysis is an important field of investigation that has attracted the attention from computer vision community in the last decades. In this paper, a novel approach for texture image analysis is proposed by using a combination of graph theory and partially self-avoiding deterministic walks. From the image, we build a regular graph where each vertex represents a pixel and it is connected to neighboring pixels (pixels whose spatial distance is less than a given radius). Transformations on the regular graph are applied to emphasize different image features. To characterize the transformed graphs, partially self-avoiding deterministic walks are performed to compose the feature vector. Experimental results on three databases indicate that the proposed method significantly improves correct classification rate compared to the state-of-the-art, e.g. from 89.37% (original tourist walk) to 94.32% on the Brodatz database, from 84.86% (Gabor filter) to 85.07% on the Vistex database and from 92.60% (original tourist walk) to 98.00% on the plant leaves database. In view of these results, it is expected that this method could provide good results in other applications such as texture synthesis and texture segmentation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Trabajo realizado por: Garijo, J. C., Hernández León, S.
Resumo:
In this work, flatbed scanning, instrumental texture analysis, spectrophotometric color determination (L*, a*, b*), moisture and specific volume measurements were used to evaluate the effects of the addition of rye flour or rye flakes, yeast and boiling water in different amounts in sponge-dough rye bread production. The treatments changed significantly (P < 0.05) the crumb cell area (mm(2)), cell diameter (mm), cell perimeter (mm), texture parameters and light reflectance (L*, a*, b*). Scalding process could be used to produce new textures and color of baked products.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia do Ambiente
Resumo:
Nowadays, several sensors and mechanisms are available to estimate a mobile robot trajectory and location with respect to its surroundings. Usually absolute positioning mechanisms are the most accurate, but they also are the most expensive ones, and require pre installed equipment in the environment. Therefore, a system capable of measuring its motion and location within the environment (relative positioning) has been a research goal since the beginning of autonomous vehicles. With the increasing of the computational performance, computer vision has become faster and, therefore, became possible to incorporate it in a mobile robot. In visual odometry feature based approaches, the model estimation requires absence of feature association outliers for an accurate motion. Outliers rejection is a delicate process considering there is always a trade-off between speed and reliability of the system. This dissertation proposes an indoor 2D position system using Visual Odometry. The mobile robot has a camera pointed to the ceiling, for image analysis. As requirements, the ceiling and the oor (where the robot moves) must be planes. In the literature, RANSAC is a widely used method for outlier rejection. However, it might be slow in critical circumstances. Therefore, it is proposed a new algorithm that accelerates RANSAC, maintaining its reliability. The algorithm, called FMBF, consists on comparing image texture patterns between pictures, preserving the most similar ones. There are several types of comparisons, with different computational cost and reliability. FMBF manages those comparisons in order to optimize the trade-off between speed and reliability.
Resumo:
La tomodensitométrie (CT) est une technique d'imagerie dont l'intérêt n'a cessé de croître depuis son apparition dans le début des années 70. Dans le domaine médical, son utilisation est incontournable à tel point que ce système d'imagerie pourrait être amené à devenir victime de son succès si son impact au niveau de l'exposition de la population ne fait pas l'objet d'une attention particulière. Bien évidemment, l'augmentation du nombre d'examens CT a permis d'améliorer la prise en charge des patients ou a rendu certaines procédures moins invasives. Toutefois, pour assurer que le compromis risque - bénéfice soit toujours en faveur du patient, il est nécessaire d'éviter de délivrer des doses non utiles au diagnostic.¦Si cette action est importante chez l'adulte elle doit être une priorité lorsque les examens se font chez l'enfant, en particulier lorsque l'on suit des pathologies qui nécessitent plusieurs examens CT au cours de la vie du patient. En effet, les enfants et jeunes adultes sont plus radiosensibles. De plus, leur espérance de vie étant supérieure à celle de l'adulte, ils présentent un risque accru de développer un cancer radio-induit dont la phase de latence peut être supérieure à vingt ans. Partant du principe que chaque examen radiologique est justifié, il devient dès lors nécessaire d'optimiser les protocoles d'acquisitions pour s'assurer que le patient ne soit pas irradié inutilement. L'avancée technologique au niveau du CT est très rapide et depuis 2009, de nouvelles techniques de reconstructions d'images, dites itératives, ont été introduites afin de réduire la dose et améliorer la qualité d'image.¦Le présent travail a pour objectif de déterminer le potentiel des reconstructions itératives statistiques pour réduire au minimum les doses délivrées lors d'examens CT chez l'enfant et le jeune adulte tout en conservant une qualité d'image permettant le diagnostic, ceci afin de proposer des protocoles optimisés.¦L'optimisation d'un protocole d'examen CT nécessite de pouvoir évaluer la dose délivrée et la qualité d'image utile au diagnostic. Alors que la dose est estimée au moyen d'indices CT (CTDIV0| et DLP), ce travail a la particularité d'utiliser deux approches radicalement différentes pour évaluer la qualité d'image. La première approche dite « physique », se base sur le calcul de métriques physiques (SD, MTF, NPS, etc.) mesurées dans des conditions bien définies, le plus souvent sur fantômes. Bien que cette démarche soit limitée car elle n'intègre pas la perception des radiologues, elle permet de caractériser de manière rapide et simple certaines propriétés d'une image. La seconde approche, dite « clinique », est basée sur l'évaluation de structures anatomiques (critères diagnostiques) présentes sur les images de patients. Des radiologues, impliqués dans l'étape d'évaluation, doivent qualifier la qualité des structures d'un point de vue diagnostique en utilisant une échelle de notation simple. Cette approche, lourde à mettre en place, a l'avantage d'être proche du travail du radiologue et peut être considérée comme méthode de référence.¦Parmi les principaux résultats de ce travail, il a été montré que les algorithmes itératifs statistiques étudiés en clinique (ASIR?, VEO?) ont un important potentiel pour réduire la dose au CT (jusqu'à-90%). Cependant, par leur fonctionnement, ils modifient l'apparence de l'image en entraînant un changement de texture qui pourrait affecter la qualité du diagnostic. En comparant les résultats fournis par les approches « clinique » et « physique », il a été montré que ce changement de texture se traduit par une modification du spectre fréquentiel du bruit dont l'analyse permet d'anticiper ou d'éviter une perte diagnostique. Ce travail montre également que l'intégration de ces nouvelles techniques de reconstruction en clinique ne peut se faire de manière simple sur la base de protocoles utilisant des reconstructions classiques. Les conclusions de ce travail ainsi que les outils développés pourront également guider de futures études dans le domaine de la qualité d'image, comme par exemple, l'analyse de textures ou la modélisation d'observateurs pour le CT.¦-¦Computed tomography (CT) is an imaging technique in which interest has been growing since it first began to be used in the early 1970s. In the clinical environment, this imaging system has emerged as the gold standard modality because of its high sensitivity in producing accurate diagnostic images. However, even if a direct benefit to patient healthcare is attributed to CT, the dramatic increase of the number of CT examinations performed has raised concerns about the potential negative effects of ionizing radiation on the population. To insure a benefit - risk that works in favor of a patient, it is important to balance image quality and dose in order to avoid unnecessary patient exposure.¦If this balance is important for adults, it should be an absolute priority for children undergoing CT examinations, especially for patients suffering from diseases requiring several follow-up examinations over the patient's lifetime. Indeed, children and young adults are more sensitive to ionizing radiation and have an extended life span in comparison to adults. For this population, the risk of developing cancer, whose latency period exceeds 20 years, is significantly higher than for adults. Assuming that each patient examination is justified, it then becomes a priority to optimize CT acquisition protocols in order to minimize the delivered dose to the patient. Over the past few years, CT advances have been developing at a rapid pace. Since 2009, new iterative image reconstruction techniques, called statistical iterative reconstructions, have been introduced in order to decrease patient exposure and improve image quality.¦The goal of the present work was to determine the potential of statistical iterative reconstructions to reduce dose as much as possible without compromising image quality and maintain diagnosis of children and young adult examinations.¦The optimization step requires the evaluation of the delivered dose and image quality useful to perform diagnosis. While the dose is estimated using CT indices (CTDIV0| and DLP), the particularity of this research was to use two radically different approaches to evaluate image quality. The first approach, called the "physical approach", computed physical metrics (SD, MTF, NPS, etc.) measured on phantoms in well-known conditions. Although this technique has some limitations because it does not take radiologist perspective into account, it enables the physical characterization of image properties in a simple and timely way. The second approach, called the "clinical approach", was based on the evaluation of anatomical structures (diagnostic criteria) present on patient images. Radiologists, involved in the assessment step, were asked to score image quality of structures for diagnostic purposes using a simple rating scale. This approach is relatively complicated to implement and also time-consuming. Nevertheless, it has the advantage of being very close to the practice of radiologists and is considered as a reference method.¦Primarily, this work revealed that the statistical iterative reconstructions studied in clinic (ASIR? and VECO have a strong potential to reduce CT dose (up to -90%). However, by their mechanisms, they lead to a modification of the image appearance with a change in image texture which may then effect the quality of the diagnosis. By comparing the results of the "clinical" and "physical" approach, it was showed that a change in texture is related to a modification of the noise spectrum bandwidth. The NPS analysis makes possible to anticipate or avoid a decrease in image quality. This project demonstrated that integrating these new statistical iterative reconstruction techniques can be complex and cannot be made on the basis of protocols using conventional reconstructions. The conclusions of this work and the image quality tools developed will be able to guide future studies in the field of image quality as texture analysis or model observers dedicated to CT.
Resumo:
BACKGROUND: The potential effects of ionizing radiation are of particular concern in children. The model-based iterative reconstruction VEO(TM) is a technique commercialized to improve image quality and reduce noise compared with the filtered back-projection (FBP) method. OBJECTIVE: To evaluate the potential of VEO(TM) on diagnostic image quality and dose reduction in pediatric chest CT examinations. MATERIALS AND METHODS: Twenty children (mean 11.4 years) with cystic fibrosis underwent either a standard CT or a moderately reduced-dose CT plus a minimum-dose CT performed at 100 kVp. Reduced-dose CT examinations consisted of two consecutive acquisitions: one moderately reduced-dose CT with increased noise index (NI = 70) and one minimum-dose CT at CTDIvol 0.14 mGy. Standard CTs were reconstructed using the FBP method while low-dose CTs were reconstructed using FBP and VEO. Two senior radiologists evaluated diagnostic image quality independently by scoring anatomical structures using a four-point scale (1 = excellent, 2 = clear, 3 = diminished, 4 = non-diagnostic). Standard deviation (SD) and signal-to-noise ratio (SNR) were also computed. RESULTS: At moderately reduced doses, VEO images had significantly lower SD (P < 0.001) and higher SNR (P < 0.05) in comparison to filtered back-projection images. Further improvements were obtained at minimum-dose CT. The best diagnostic image quality was obtained with VEO at minimum-dose CT for the small structures (subpleural vessels and lung fissures) (P < 0.001). The potential for dose reduction was dependent on the diagnostic task because of the modification of the image texture produced by this reconstruction. CONCLUSIONS: At minimum-dose CT, VEO enables important dose reduction depending on the clinical indication and makes visible certain small structures that were not perceptible with filtered back-projection.
Resumo:
INTRODUCTION: One quarter of osteoporotic fractures occur in men. TBS, a gray-level measurement derived from lumbar spine DXA image texture, is related to microarchitecture and fracture risk independently of BMD. Previous studies reported the ability of spine TBS to predict osteoporotic fractures in women. Our aim was to evaluate the ability of TBS to predict clinical osteoporotic fractures in men. METHODS: 3620 men aged ≥50 (mean 67.6years) at the time of baseline DXA (femoral neck, spine) were identified from a database (Province of Manitoba, Canada). Health service records were assessed for the presence of non-traumatic osteoporotic fracture after BMD testing. Lumbar spine TBS was derived from spine DXA blinded to clinical parameters and outcomes. We used Cox proportional hazard regression to analyze time to first fracture adjusted for clinical risk factors (FRAX without BMD), osteoporosis treatment and BMD (hip or spine). RESULTS: Mean followup was 4.5years. 183 (5.1%) men sustain major osteoporotic fractures (MOF), 91 (2.5%) clinical vertebral fractures (CVF), and 46 (1.3%) hip fractures (HF). Correlation between spine BMD and spine TBS was modest (r=0.31), less than correlation between spine and hip BMD (r=0.63). Significantly lower spine TBS were found in fracture versus non-fracture men for MOF (p<0.001), HF (p<0.001) and CVF (p=0.003). Area under the receiver operating characteristic curve (AUC) for incident fracture discrimination with TBS was significantly better than chance (MOF AUC=0.59, p<0.001; HF AUC=0.67, p<0.001; CVF AUC=0.57, p=0.032). TBS predicted MOF and HF (but not CVF) in models adjusted for FRAX without BMD and osteoporosis treatment. TBS remained a predictor of HF (but not MOF) after further adjustment for hip BMD or spine BMD. CONCLUSION: We observed that spine TBS predicted MOF and HF independently of the clinical FRAX score, HF independently of FRAX and BMD in men. Studies with more incident fractures are needed to confirm these findings.
Resumo:
Image processing has been a challenging and multidisciplinary research area since decades with continuing improvements in its various branches especially Medical Imaging. The healthcare industry was very much benefited with the advances in Image Processing techniques for the efficient management of large volumes of clinical data. The popularity and growth of Image Processing field attracts researchers from many disciplines including Computer Science and Medical Science due to its applicability to the real world. In the meantime, Computer Science is becoming an important driving force for the further development of Medical Sciences. The objective of this study is to make use of the basic concepts in Medical Image Processing and develop methods and tools for clinicians’ assistance. This work is motivated from clinical applications of digital mammograms and placental sonograms, and uses real medical images for proposing a method intended to assist radiologists in the diagnostic process. The study consists of two domains of Pattern recognition, Classification and Content Based Retrieval. Mammogram images of breast cancer patients and placental images are used for this study. Cancer is a disaster to human race. The accuracy in characterizing images using simplified user friendly Computer Aided Diagnosis techniques helps radiologists in detecting cancers at an early stage. Breast cancer which accounts for the major cause of cancer death in women can be fully cured if detected at an early stage. Studies relating to placental characteristics and abnormalities are important in foetal monitoring. The diagnostic variability in sonographic examination of placenta can be overlooked by detailed placental texture analysis by focusing on placental grading. The work aims on early breast cancer detection and placental maturity analysis. This dissertation is a stepping stone in combing various application domains of healthcare and technology.
Resumo:
Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.
Resumo:
This thesis proposes a solution to the problem of estimating the motion of an Unmanned Underwater Vehicle (UUV). Our approach is based on the integration of the incremental measurements which are provided by a vision system. When the vehicle is close to the underwater terrain, it constructs a visual map (so called "mosaic") of the area where the mission takes place while, at the same time, it localizes itself on this map, following the Concurrent Mapping and Localization strategy. The proposed methodology to achieve this goal is based on a feature-based mosaicking algorithm. A down-looking camera is attached to the underwater vehicle. As the vehicle moves, a sequence of images of the sea-floor is acquired by the camera. For every image of the sequence, a set of characteristic features is detected by means of a corner detector. Then, their correspondences are found in the next image of the sequence. Solving the correspondence problem in an accurate and reliable way is a difficult task in computer vision. We consider different alternatives to solve this problem by introducing a detailed analysis of the textural characteristics of the image. This is done in two phases: first comparing different texture operators individually, and next selecting those that best characterize the point/matching pair and using them together to obtain a more robust characterization. Various alternatives are also studied to merge the information provided by the individual texture operators. Finally, the best approach in terms of robustness and efficiency is proposed. After the correspondences have been solved, for every pair of consecutive images we obtain a list of image features in the first image and their matchings in the next frame. Our aim is now to recover the apparent motion of the camera from these features. Although an accurate texture analysis is devoted to the matching pro-cedure, some false matches (known as outliers) could still appear among the right correspon-dences. For this reason, a robust estimation technique is used to estimate the planar transformation (homography) which explains the dominant motion of the image. Next, this homography is used to warp the processed image to the common mosaic frame, constructing a composite image formed by every frame of the sequence. With the aim of estimating the position of the vehicle as the mosaic is being constructed, the 3D motion of the vehicle can be computed from the measurements obtained by a sonar altimeter and the incremental motion computed from the homography. Unfortunately, as the mosaic increases in size, image local alignment errors increase the inaccuracies associated to the position of the vehicle. Occasionally, the trajectory described by the vehicle may cross over itself. In this situation new information is available, and the system can readjust the position estimates. Our proposal consists not only in localizing the vehicle, but also in readjusting the trajectory described by the vehicle when crossover information is obtained. This is achieved by implementing an Augmented State Kalman Filter (ASKF). Kalman filtering appears as an adequate framework to deal with position estimates and their associated covariances. Finally, some experimental results are shown. A laboratory setup has been used to analyze and evaluate the accuracy of the mosaicking system. This setup enables a quantitative measurement of the accumulated errors of the mosaics created in the lab. Then, the results obtained from real sea trials using the URIS underwater vehicle are shown.
Resumo:
This chapter explores the distinctive qualities of the Matt Smith era Doctor Who, focusing on how dramatic emphases are connected with emphases on visual style, and how this depends on the programme's production methods and technologies. Doctor Who was first made in the 1960s era of live, studio-based, multi-camera television with monochrome pictures. However, as technical innovations like colour filming, stereo sound, CGI and post-production effects technology have been routinely introduced into the programme, and now High Definition (HD) cameras, they have given Doctor Who’s creators new ways of making visually distinctive narratives. Indeed, it has been argued that since the 1980s television drama has become increasingly like cinema in its production methods and aesthetic aims. Viewers’ ability to view the programme on high-specification TV sets, and to record and repeat episodes using digital media, also encourage attention to visual style in television as much as in cinema. The chapter evaluates how these new circumstances affect what Doctor Who has become and engages with arguments that visual style has been allowed to override characterisation and story in the current Doctor Who. The chapter refers to specific episodes, and frames the analysis with reference to earlier years in Doctor Who’s long history. For example, visual spectacle using green-screen and CGI can function as a set-piece (at the opening or ending of an episode) but can also work ‘invisibly’ to render a setting realistically. Shooting on location using HD cameras provides a rich and detailed image texture, but also highlights mistakes and especially problems of lighting. The reduction of Doctor Who’s budget has led to Steven Moffat’s episodes relying less on visual extravagance, connecting back both to Russell T. Davies’s concern to show off the BBC’s investment in the series but also to reference British traditions of gritty and intimate social drama. Pressures to capitalise on Doctor Who as a branded product are the final aspect of the chapter’s analysis, where the role of Moffat as ‘showrunner’ links him to an American (not British) style of television production where the preservation of format and brand values give him unusual power over the look of the series.
Resumo:
Texture is an important visual attribute used to describe the pixel organization in an image. As well as it being easily identified by humans, its analysis process demands a high level of sophistication and computer complexity. This paper presents a novel approach for texture analysis, based on analyzing the complexity of the surface generated from a texture, in order to describe and characterize it. The proposed method produces a texture signature which is able to efficiently characterize different texture classes. The paper also illustrates a novel method performance on an experiment using texture images of leaves. Leaf identification is a difficult and complex task due to the nature of plants, which presents a huge pattern variation. The high classification rate yielded shows the potential of the method, improving on traditional texture techniques, such as Gabor filters and Fourier analysis.
Resumo:
The purpose of this thesis is to develop a working methodology to color a grey scale image. This thesis is based on approach of using a colored reference image. Coloring grey scale images has no exact solution till date and all available methods are based on approximation. This technique of using a color reference image for approximating color information in grey scale image is among most modern techniques.Method developed here in this paper is better than existing methods of approximation of color information addition in grey scale images in brightness, sharpness, color shade gradients and distribution of colors over objects.Color and grey scale images are analyzed for statistical and textural features. This analysis is done only on basis of luminance value in images. These features are then segmented and segments of color and grey scale images are mapped on basis of distances of segments from origin. Then chromatic values are transferred between these matched segments from color image to grey scale image.Technique proposed in this paper uses better mechanism of mapping clusters and mapping colors between segments, resulting in notable improvement in existing techniques in this category.
Resumo:
A textura é um atributo ainda pouco utilizado no reconhecimento automático de cenas naturais em sensoriamento remoto, já que ela advém da sensação visual causada pelas variações tonais existentes em uma determinada região da imagem, tornando difícil a sua quantificação. A morfologia matemática, através de operações como erosão, dilatação e abertura, permite decompor uma imagem em elementos fundamentais, as primitivas texturais. As primitivas texturais apresentam diversas dimensões, sendo possível associar um conjunto de primitivas com dimensões semelhantes, em uma determinada classe textural. O processo de classificação textural quantifica as primitivas texturais, extrai as distribuições das dimensões das mesmas e separa as diferentes distribuições por meio de um classificador de máxima-verossimilhança gaussiana. O resultado final é uma imagem temática na qual cada tema representa uma das texturas existentes na imagem original.