983 resultados para hydro-meteorological disasters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sheet metal blank, hydro-impulsive forming, explosive forming, gas detonation forming

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Intraocular gas bubbles expand as patients move up to higher altitude. This may cause an acute intraocular pressure (IOP) rise with associated vascular obstructions and visual loss. MATERIALS AND METHODS: Two pseudophakic patients underwent a pars plana vitrectomy and 23% SF6 gas tamponade for a pseudophakic retinal detachment. During the immediate post-operative phase, the patients travelled daily up to their domicile, which was situated approximately 600 m higher than the level where they had been operated on. These travels were always without any pain or visual loss. However 1 week after surgery both patients developed severe ocular pain, and one patient had complete temporary loss of vision after ascending to altitude levels, which had previously presented no problem. Both episodes occurred in parallel with a change in barometric pressure. RESULTS: Treatment with acetazolamide reduced the increased IOP to normal levels, and visual acuity recovered. CONCLUSIONS: Although the post-operative size of an intraocular gas bubble decreases progressively over time, problems with bubble expansion may still occur even at a late stage if meteorological factors, that may increase the bubble size, change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 0.125 degree raster or grid-based Geographic Information System with data on tsetse, trypanosomosis, animal production, agriculture and land use has recently been developed in Togo. This paper addresses the problem of generating tsetse distribution and abundance maps from remotely sensed data, using a restricted amount of field data. A discriminant analysis model is tested using contemporary tsetse data and remotely sensed, low resolution data acquired from the National Oceanographic and Atmospheric Administration and Meteosat platforms. A split sample technique is adopted where a randomly selected part of the field measured data (training set) serves to predict the other part (predicted set). The obtained results are then compared with field measured data per corresponding grid-square. Depending on the size of the training set the percentage of concording predictions varies from 80 to 95 for distribution figures and from 63 to 74 for abundance. These results confirm the potential of satellite data application and multivariate analysis for the prediction, not only of the tsetse distribution, but more importantly of their abundance. This opens up new avenues because satellite predictions and field data may be combined to strengthen or substitute one another and thus reduce costs of field surveys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the period 1996-2000, forty-three heavy rainfall events have been detected in the Internal Basins of Catalonia (Northeastern of Spain). Most of these events caused floods and serious damage. This high number leads to the need for a methodology to classify them, on the basis of their surface rainfall distribution, their internal organization and their physical features. The aim of this paper is to show a methodology to analyze systematically the convective structures responsible of those heavy rainfall events on the basis of the information supplied by the meteorological radar. The proposed methodology is as follows. Firstly, the rainfall intensity and the surface rainfall pattern are analyzed on the basis of the raingauge data. Secondly, the convective structures at the lowest level are identified and characterized by using a 2-D algorithm, and the convective cells are identified by using a 3-D procedure that looks for the reflectivity cores in every radar volume. Thirdly, the convective cells (3-D) are associated with the 2-D structures (convective rainfall areas). This methodology has been applied to the 43 heavy rainfall events using the meteorological radar located near Barcelona and the SAIH automatic raingauge network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the aims of the MEDEX project is to improve the knowledge of high-impact weather events in the Mediterranean. According to the guidelines of this project, a pilot study was carried out in two regions of Spain (the Balearic Islands and Catalonia) by the Social Impact Research group of MEDEX. The main goal is to suggest some general and suitable criteria about how to analyse requests received in Meteorological Services arising out of the damage caused by weather events. Thus, all the requests received between 2000 and 2002 at the Servei Meteorològic de Catalunya as well as at the Division of AEMET in the Balearic Islands were analysed. Firstly, the proposed criteria in order to build the database are defined and discussed. Secondly, the temporal distribution of the requests for damage claims is analysed. On average, almost half of them were received during the first month after the event happened. During the first six months, the percentage increases by 90%. Thirdly, various factors are taken into account to determine the impact of specific events on society. It is remarkable that the greatest number of requests is for those episodes with simultaneous heavy rain and strong wind, and finally, those that are linked to high population density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current operational very short-term and short-term quantitative precipitation forecast (QPF) at the Meteorological Service of Catalonia (SMC) is made by three different methodologies: Advection of the radar reflectivity field (ADV), Identification, tracking and forecasting of convective structures (CST) and numerical weather prediction (NWP) models using observational data assimilation (radar, satellite, etc.). These precipitation forecasts have different characteristics, lead time and spatial resolutions. The objective of this study is to combine these methods in order to obtain a single and optimized QPF at each lead time. This combination (blending) of the radar forecast (ADV and CST) and precipitation forecast from NWP model is carried out by means of different methodologies according to the prediction horizon. Firstly, in order to take advantage of the rainfall location and intensity from radar observations, a phase correction technique is applied to the NWP output to derive an additional corrected forecast (MCO). To select the best precipitation estimation in the first and second hour (t+1 h and t+2 h), the information from radar advection (ADV) and the corrected outputs from the model (MCO) are mixed by using different weights, which vary dynamically, according to indexes that quantify the quality of these predictions. This procedure has the ability to integrate the skill of rainfall location and patterns that are given by the advection of radar reflectivity field with the capacity of generating new precipitation areas from the NWP models. From the third hour (t+3 h), as radar-based forecasting has generally low skills, only the quantitative precipitation forecast from model is used. This blending of different sources of prediction is verified for different types of episodes (convective, moderately convective and stratiform) to obtain a robust methodology for implementing it in an operational and dynamic way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research seeks to fill some of the gaps in understanding the local, regional, and statewide economic consequences of the disasters of 2008. This report evaluates sets of population, unemployment, employment, business firms, and trade patterns over time in an attempt to discern the household consumption and business productivity disruptions caused by the weather disasters of 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematical models have great potential to support land use planning, with the goal of improving water and land quality. Before using a model, however, the model must demonstrate that it can correctly simulate the hydrological and erosive processes of a given site. The SWAT model (Soil and Water Assessment Tool) was developed in the United States to evaluate the effects of conservation agriculture on hydrological processes and water quality at the watershed scale. This model was initially proposed for use without calibration, which would eliminate the need for measured hydro-sedimentologic data. In this study, the SWAT model was evaluated in a small rural watershed (1.19 km²) located on the basalt slopes of the state of Rio Grande do Sul in southern Brazil, where farmers have been using cover crops associated with minimum tillage to control soil erosion. Values simulated by the model were compared with measured hydro-sedimentological data. Results for surface and total runoff on a daily basis were considered unsatisfactory (Nash-Sutcliffe efficiency coefficient - NSE < 0.5). However simulation results on monthly and annual scales were significantly better. With regard to the erosion process, the simulated sediment yields for all years of the study were unsatisfactory in comparison with the observed values on a daily and monthly basis (NSE values < -6), and overestimated the annual sediment yield by more than 100 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil water available to crops is defined by specific values of water potential limits. Underlying the estimation of hydro-physical limits, identified as permanent wilting point (PWP) and field capacity (FC), is the selection of a suitable method based on a multi-criteria analysis that is not always clear and defined. In this kind of analysis, the time required for measurements must be taken into consideration as well as other external measurement factors, e.g., the reliability and suitability of the study area, measurement uncertainty, cost, effort and labour invested. In this paper, the efficiency of different methods for determining hydro-physical limits is evaluated by using indices that allow for the calculation of efficiency in terms of effort and cost. The analysis evaluates both direct determination methods (pressure plate - PP and water activity meter - WAM) and indirect estimation methods (pedotransfer functions - PTFs). The PTFs must be validated for the area of interest before use, but the time and cost associated with this validation are not included in the cost of analysis. Compared to the other methods, the combined use of PP and WAM to determine hydro-physical limits differs significantly in time and cost required and quality of information. For direct methods, increasing sample size significantly reduces cost and time. This paper assesses the effectiveness of combining a general analysis based on efficiency indices and more specific analyses based on the different influencing factors, which were considered separately so as not to mask potential benefits or drawbacks that are not evidenced in efficiency estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The combustion of rice husk generates a partially burnt mixture called rice husk ash (RHA) that can be used as a source of nutrients to crops and as a conditioner of soil physical properties. The objective of this study was to evaluate the effect of RHA levels on the hydro-physical properties of a Typic Hapludult. The experimental design was composed of random blocks with four replications, which comprised plots of 24 m2 and treatments with increasing RHA rates: 0, 40, 80 and 120 Mg ha-1. Undisturbed soil samples were collected in the soil layers of 0.00-0.10 and 0.10-0.20 m after nine months of RHA application, using steel cylinders (0.03 m of height and 0.047 m of diameter). These samples were used to determine soil bulk density (Bd), total soil porosity (TP), soil macroporosity (Ma), soil microporosity (Mi) and the available water capacity (AWC). Disturbed soil samples were collected to determine the stability of soil aggregates in water, mean weight diameter of water stable aggregates (MWD), and soil particle size distribution. The results show that, as the RHA rate increased in the soil, Bd values decreased and TP, Ma and MWD values increased. No effect of RHA was found on Mi and AWC values. The effects of RHA on the S parameter (Dexter, 2004), precompression stress and compression index (Dias Junior and Pierce, 1995) values are consistent those shown for density and total porosity. Rice husk ash was shown to be an efficient residue to improve soil physical properties, mainly at rates between 40 and 80 Mg ha-1. Rice husk ash reduces bulk density and increases total porosity, macroporosity and soil aggregation, but does not affect microporosity, field capacity, permanent wilting point, and available water capacity of the soil. The effect of rice husk ash on the S parameter, precompression stress and index compressibility coefficient values are consistent with those observed for the bulk density and total porosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.