917 resultados para human kinematic motion real-time tracking
Resumo:
Currently, the GNSS computing modes are of two classes: network-based data processing and user receiver-based processing. A GNSS reference receiver station essentially contributes raw measurement data in either the RINEX file format or as real-time data streams in the RTCM format. Very little computation is carried out by the reference station. The existing network-based processing modes, regardless of whether they are executed in real-time or post-processed modes, are centralised or sequential. This paper describes a distributed GNSS computing framework that incorporates three GNSS modes: reference station-based, user receiver-based and network-based data processing. Raw data streams from each GNSS reference receiver station are processed in a distributed manner, i.e., either at the station itself or at a hosting data server/processor, to generate station-based solutions, or reference receiver-specific parameters. These may include precise receiver clock, zenith tropospheric delay, differential code biases, ambiguity parameters, ionospheric delays, as well as line-of-sight information such as azimuth and elevation angles. Covariance information for estimated parameters may also be optionally provided. In such a mode the nearby precise point positioning (PPP) or real-time kinematic (RTK) users can directly use the corrections from all or some of the stations for real-time precise positioning via a data server. At the user receiver, PPP and RTK techniques are unified under the same observation models, and the distinction is how the user receiver software deals with corrections from the reference station solutions and the ambiguity estimation in the observation equations. Numerical tests demonstrate good convergence behaviour for differential code bias and ambiguity estimates derived individually with single reference stations. With station-based solutions from three reference stations within distances of 22–103 km the user receiver positioning results, with various schemes, show an accuracy improvement of the proposed station-augmented PPP and ambiguity-fixed PPP solutions with respect to the standard float PPP solutions without station augmentation and ambiguity resolutions. Overall, the proposed reference station-based GNSS computing mode can support PPP and RTK positioning services as a simpler alternative to the existing network-based RTK or regionally augmented PPP systems.
Resumo:
Orthotopic or intracardiac injection of human breast cancer cell lines into immunocompromised mice allows study of the molecular basis of breast cancer metastasis. We have established a quantitative real-time PCR approach to analyze metastatic spread of human breast cancer cells inoculated into nude mice via these routes. We employed MDA-MB-231 human breast cancer cells genetically tagged with a bacterial β-galactosidase (Lac-Z) retroviral vector, enabling their detection by TaqMan® real-time PCR. PCR detection was linear, specific, more sensitive than conventional PCR, and could be used to directly quantitate metastatic burden in bone and soft organs. Attesting to the sensitivity and specificity of the PCR detection strategy, as few as several hundred metastatic MDA-MB-231 cells were detectable in 100 μm segments of paraffin-embedded lung tissue, and only in samples adjacent to sections that scored positive by histological detection. Moreover, the measured real-time PCR metastatic burden in the bone environment (mouse hind-limbs, n = 48) displayed a high correlation to the degree of osteolytic damage observed by high resolution X-ray analysis (r2 = 0.972). Such a direct linear relationship to tumor burden and bone damage substantiates the so-called 'vicious cycle' hypothesis in which metastatic tumor cells promote the release of factors from the bone which continue to stimulate the tumor cells. The technique provides a useful tool for molecular and cellular analysis of human breast cancer metastasis to bone and soft organs, can easily be extended to other cell/marker/organ systems, and should also find application in preclinical assessment of anti-metastatic modalities.
Resumo:
Network Real-Time Kinematic (NRTK) is a technology that can provide centimeter-level accuracy positioning services in real time, and it is enabled by a network of Continuously Operating Reference Stations (CORS). The location-oriented CORS placement problem is an important problem in the design of a NRTK as it will directly affect not only the installation and operational cost of the NRTK, but also the quality of positioning services provided by the NRTK. This paper presents a Memetic Algorithm (MA) for the location-oriented CORS placement problem, which hybridizes the powerful explorative search capacity of a genetic algorithm and the efficient and effective exploitative search capacity of a local optimization. Experimental results have shown that the MA has better performance than existing approaches. In this paper we also conduct an empirical study about the scalability of the MA, effectiveness of the hybridization technique and selection of crossover operator in the MA.
Resumo:
Piezoelectric ultrasound transducers are commonly used to convert mechanical energy to electrical energy and vice versa. The transducer performance is highly affected by the frequency at which it is excited. If excitation frequency and main resonant frequency match, transducers can deliver maximum power. However, the problem is that main resonant frequency changes in real time operation resulting in low power conversion. To achieve the maximum possible power conversion, the transducer should be excited at its resonant frequency estimated in real time. This paper proposes a method to first estimate the resonant frequency of the transducer and then tunes the excitation frequency accordingly in real time. The measurement showed a significant difference between the offline and real time resonant frequencies. Also, it was shown that the maximum power was achieved at the resonant frequency estimated in real time compare to the one measured offline.
Resumo:
The BeiDou system is the first global navigation satellite system in which all satellites transmit triple-frequency signals that can provide the positioning, navigation, and timing independently. A benefit of triple-frequency signals is that more useful combinations can be formed, including some extrawide-lane combinations whose ambiguities can generally be instantaneously fixed without distance restriction, although the narrow-lane ambiguity resolution (NL AR) still depends on the interreceiver distance or requires a long time to achieve. In this paper, we synthetically study decimeter and centimeter kinematic positioning using BeiDou triple-frequency signals. It starts with AR of two extrawide-lane signals based on the ionosphere-free or ionosphere-reduced geometry-free model. For decimeter positioning, one can immediately use two ambiguity-fixed extrawide-lane observations without pursuing NL AR. To achieve higher accuracy, NL AR is the necessary next step. Despite the fact that long-baseline NL AR is still challenging, some NL ambiguities can indeed be fixed with high reliability. Partial AR for NL signals is acceptable, because as long as some ambiguities for NL signals are fixed, positioning accuracy will be certainly improved.With accumulation of observations, more and more NL ambiguities are fixed and the positioning accuracy continues to improve. An efficient Kalman-filtering system is established to implement the whole process. The formulated system is flexible, since the additional constraints can be easily applied to enhance the model's strength. Numerical results from a set of real triple-frequency BeiDou data on a 50 km baseline show that decimeter positioning is achievable instantaneously.With only five data epochs, 84% of NL ambiguities can be fixed so that the real-time kinematic accuracies are 4.5, 2.5, and 16 cm for north, east, and height components (respectively), while with 10 data epochs more than 90% of NL ambiguities are fixed, and the rea- -time kinematic solutions are improved to centimeter level for all three coordinate components.
Resumo:
To realistically simulate the motion of flexible objects such as ropes, strings, snakes, or human hair,one strategy is to discretise the object into a large number of small rigid links connected by rotary or spherical joints. The discretised system is highly redundant and the rotations at the joints (or the motion of the other links) for a desired Cartesian motion of the end of a link cannot be solved uniquely. In this paper, we propose a novel strategy to resolve the redundancy in such hyper-redundant systems.We make use of the classical tractrix curve and its attractive features. For a desired Cartesian motion of the `head'of a link, the `tail' of the link is moved according to a tractrix,and recursively all links of the discretised objects are moved along different tractrix curves. We show that the use of a tractrix curve leads to a more `natural' motion of the entire object since the motion is distributed uniformly along the entire object with the displacements tending to diminish from the `head' to the `tail'. We also show that the computation of the motion of the links can be done in real time since it involves evaluation of simple algebraic, trigonometric and hyperbolic functions. The strategy is illustrated by simulations of a snake, tying of knots with a rope and a solution of the inverse kinematics of a planar hyper-redundant manipulator.
Resumo:
Current earthquake early warning systems usually make magnitude and location predictions and send out a warning to the users based on those predictions. We describe an algorithm that assesses the validity of the predictions in real-time. Our algorithm monitors the envelopes of horizontal and vertical acceleration, velocity, and displacement. We compare the observed envelopes with the ones predicted by Cua & Heaton's envelope ground motion prediction equations (Cua 2005). We define a "test function" as the logarithm of the ratio between observed and predicted envelopes at every second in real-time. Once the envelopes deviate beyond an acceptable threshold, we declare a misfit. Kurtosis and skewness of a time evolving test function are used to rapidly identify a misfit. Real-time kurtosis and skewness calculations are also inputs to both probabilistic (Logistic Regression and Bayesian Logistic Regression) and nonprobabilistic (Least Squares and Linear Discriminant Analysis) models that ultimately decide if there is an unacceptable level of misfit. This algorithm is designed to work at a wide range of amplitude scales. When tested with synthetic and actual seismic signals from past events, it works for both small and large events.