915 resultados para horse, laminitis, glucose, insulin, GLUT, insulin resistance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives/Aim—Microarray (gene chip) technology offers a powerful new tool for analyzing the expression of large numbers of genes in many experimental samples. The aim of this study was to design, construct, and use a gene chip to measure the expression levels of key genes in metabolic pathways related to insulin resistance.
Methods—We selected genes that were implicated in the development of insulin resistance, including genes involved in insulin signaling; glucose uptake, oxidation, and storage; fat uptake, oxidation, and storage; cytoskeletal components; and transcription factors. The key regulatory genes in the pathways were identified, along with other recently identified candidate genes such as calpain-10. A total of 242 selected genes (including 32 internal control elements) were sequence-verified, purified, and arrayed on aldehyde-coated slides.
Results—Where more than 1 clone containing the gene of interest was available, we chose those containing the genes in the 5' orientation and an insert size of around 1.5 kb. Of the 262 clones purchased, 56 (21%) were found to contain sequences other than those expected. In addition, 2 (1%) did not grow under standard conditions and were assumed to be nonviable. In these cases, alternate clones containing the gene of interest were chosen as described above. The current version of the Insulin Resistance Gene Chip contains 210 genes of interest, plus 48 control elements. A full list of the genes is available at http://www.hbs.deakin.edu.au/mru/research/gene_chip_tech/genechip_three.htm/.
Conclusions
—The human Insulin Resistance Gene Chip that we have constructed will be a very useful tool for investigating variation in the expression of genes relevant to insulin resistance under various experimental conditions. Initially, the gene chip will be used in studies such as exercise interventions, fasting, euglycemic-hyperinsulinemic clamps, and administration of antidiabetic agents

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes and obesity are characterised by an impairment in mitochondrial function resulting in a decrease in glucose and fatty acid oxidation, respiration and an increase in intramuscular triglycerides (IMTG's) and insulin resistance. Peroxisome proliferator-activated receptor (PPAR)-ggr coactivator 1agr (PGC-1agr) is a nuclear transcriptional coactivator which regulates several important metabolic processes including, mitochondrial biogenesis, adaptive thermogenesis, respiration, insulin secretion and gluconeogenesis. In addition, PGC-1agr has been shown to increase the percentage of oxidative type I muscle fibres, with the latter responsible for the majority of insulin stimulated glucose uptake. PGC-1agr also co-activates PPAR's agr, bgr/dgr and ggr which are important transcription factors of genes regulating lipid and glucose metabolism. Exercise causes mitochondrial biogenesis, improves skeletal muscle fatty acid oxidation capacity and insulin sensitivity, therefore making it an important intervention for the treatment of insulin resistance. The expression of PGC-1agr mRNA is reduced in diabetic subjects, however, it is rapidly induced in response to interventions which signal alterations in metabolic requirements, such as exercise. Because of the important role of PGC-1agr in the control of energy metabolism and insulin sensitivity, it is seen as a candidate factor in the etiology of type 2 diabetes and a drug target for its therapeutic treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Casitas b-lineage lymphoma (c-Cbl) is a multiadaptor protein with E3-ubiquitin ligase activity involved in regulating the degradation of receptor tyrosine kinases. We have recently reported that c-Cbl–/– mice exhibit a lean phenotype and enhanced peripheral insulin action likely due to elevated energy expenditure. In the study reported here, we examined the effect of a high-fat diet on energy homeostasis and glucose metabolism in these animals. When c-Cbl–/– mice were fed a high-fat diet for 4 weeks, they maintained hyperphagia, higher whole-body oxygen consumption (27%), and greater activity (threefold) compared with wild-type animals fed the same diet. In addition, the activity of several enzymes involved in mitochondrial fat oxidation and the phosphorylation of acetyl CoA carboxylase was significantly increased in muscle of high-fat–fed c-Cbl–deficient mice, indicating a greater capacity for fat oxidation in these animals. As a result of these differences, fat-fed c-Cbl–/– mice were 30% leaner than wild-type animals and were protected against high-fat diet–induced insulin resistance. These studies are consistent with a role for c-Cbl in regulating nutrient partitioning in skeletal muscle and emphasize the potential of c-Cbl as a therapeutic target in the treatment of obesity and type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims/hypothesis: To study the secondary consequences of impaired suppression of endogenous glucose production (EGP) we have created a transgenic rat overexpressing the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) in the kidney. The aim of this study was to determine whether peripheral insulin resistance develops in these transgenic rats.
Methods: Whole body rate of glucose disappearance (Rd) and endogenous glucose production were measured basally and during a euglycaemic/hyperinsulinaemic clamp in phosphoenolpyruvate carboxykinase transgenic and control rats using [6-3H]-glucose. Glucose uptake into individual tissues was measured in vivo using 2-[1-14C]-deoxyglucose.
Results: Phosphoenolpyruvate carboxykinase transgenic rats were heavier and had increased gonadal and infrarenal fat pad weights. Under basal conditions, endogenous glucose production was similar in phosphoenolpyruvate carboxykinase transgenic and control rats (37.4±1.1 vs 34.6±2.6 µmol/kg/min). Moderate hyperinsulinaemia (810 pmol/l) completely suppressed EGP in control rats (–0.6±5.5 µmol/kg/min, p<0.05) while there was no suppression in phosphoenolpyruvate carboxykinase rats (45.2±7.9 µmol/kg/min). Basal Rd was comparable between PEPCK transgenic and control rats (37.4±1.1 vs 34.6±2.6 µmol/kg/min) but under insulin-stimulated conditions the increase in Rd was greater in control compared to phosphoenolpyruvate carboxykinase transgenic rats indicative of insulin resistance (73.4±11.2 vs 112.0±8.0 µmol/kg/min, p<0.05). Basal glucose uptake was reduced in white and brown adipose tissue, heart and soleus while insulin-stimulated transport was reduced in white and brown adipose tissue, white quadriceps, white gastrocnemius and soleus in phosphoenolpyruvate carboxykinase transgenic compared to control rats. The impairment in both white and brown adipose tissue glucose uptake in phosphoenolpyruvate carboxykinase transgenic rats was associated with a decrease in GLUT4 protein content. In contrast, muscle GLUT4 protein, triglyceride and long-chain acylCoA levels were comparable between PEPCK transgenic and control rats.
Conclusions/interpretation: A primary defect in suppression of EGP caused adipose tissue and muscle insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consumption of a Western diet rich in saturated fats is associated with obesity and insulin resistance. In some insulin-resistant phenotypes this is associated with accumulation of skeletal muscle fatty acids. We examined the effects of diets high in saturated fatty acids (Sat) or n-6 polyunsaturated fatty acids (PUFA) on skeletal muscle fatty acid metabolite accumulation and whole-body insulin sensitivity. Male Sprague-Dawley rats were fed a chow diet (16% calories from fat, Con) or a diet high (53%) in Sat or PUFA for 8 wk. Insulin sensitivity was assessed by fasting plasma glucose and insulin and glucose tolerance via an oral glucose tolerance test. Muscle ceramide and diacylglycerol (DAG) levels and triacylglycerol (TAG) fatty acids were also measured. Both high-fat diets increased plasma free fatty acid levels by 30%. Compared with Con, Sat-fed rats were insulin resistant, whereas PUFA-treated rats showed improved insulin sensitivity. Sat caused a 125% increase in muscle DAG and a small increase in TAG. Although PUFA also resulted in a small increase in DAG, the excess fatty acids were primarily directed toward TAG storage (105% above Con). Ceramide content was unaffected by either high-fat diet. To examine the effects of fatty acids on cellular lipid storage and glucose uptake in vitro, rat L6 myotubes were incubated for 5 h with saturated and polyunsaturated fatty acids. After treatment of L6 myotubes with palmitate (C16:0), the ceramide and DAG content were increased by two- and fivefold, respectively, concomitant with reduced insulin-stimulated glucose uptake. In contrast, treatment of these cells with linoleate (C18:2) did not alter DAG, ceramide levels, and glucose uptake compared with controls (no added fatty acids). Both 16:0 and 18:2 treatments increased myotube TAG levels (C18:2 vs. C16:0, P < 0.05). These results indicate that increasing dietary Sat induces insulin resistance with concomitant increases in muscle DAG. Diets rich in n-6 PUFA appear to prevent insulin resistance by directing fat into TAG, rather than other lipid metabolites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE—We examined the associations of objectively measured sedentary time and physical activity with continuous indexes of metabolic risk in Australian adults without known diabetes.

RESEARCH DESIGN AND METHODS—An accelerometer was used to derive the percentage of monitoring time spent sedentary and in light-intensity and moderate-to-vigorous–intensity activity, as well as mean activity intensity, in 169 Australian Diabetes, Obesity and Lifestyle Study (AusDiab) participants (mean age 53.4 years). Associations with waist circumference, triglycerides, HDL cholesterol, resting blood pressure, fasting plasma glucose, and a clustered metabolic risk score were examined.

RESULTS—Independent of time spent in moderate-to-vigorous–intensity activity, there were significant associations of sedentary time, light-intensity time, and mean activity intensity with waist circumference and clustered metabolic risk. Independent of waist circumference, moderate-to-vigorous–intensity activity time was significantly beneficially associated with triglycerides.

CONCLUSIONS—These findings highlight the importance of decreasing sedentary time, as well as increasing time spent in physical activity, for metabolic health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Knowledge of individual changes in insulin resistance (IR) and longitudinal relationships of IR with lifestyle-associated factors are of important practical significance, but little longitudinal data exist in asymptomatic children. We aimed to determine (a) changes in the homeostatic model of insulin resistance (HOMA-IR) over a 2-yr period and (b) comparisons of longitudinal and cross-sectional relationships between HOMA-IR and lifestyle-related risk factors.

Methods: Our subjects, 241 boys and 257 girls, were assessed at age 8.1 yr (SD 0.35) and again 2 yr later for fasting blood glucose and insulin, dual X-ray absorptiometry-assessed percentage of body fat (%BF), pedometer-assessed physical activity (PA), and cardio-respiratory fitness (CRF) by multistage running test.

Results: HOMA-IR was initially 9% greater in girls than boys and 27% greater 2 yr later. There was no evidence of longitudinal relationships between HOMA-IR and %BF in boys or girls, despite significant cross-sectional relationships (p < 0.001). In boys, there was evidence of a longitudinal relationship between HOMA-IR and both PA (p < 0.001) and CRF (p = 0.05). In girls, we found a cross-sectional relationship between HOMA-IR and CRF (p < 0.001).

Conclusions: HOMA-IR increases between 8 and 10 yr of age and to a greater extent in girls. Longitudinal, unlike cross-sectional, relationships do not support the premise that body fat has any impact on HOMA-IR during this period or that PA or CRF changes affect HOMA-IR in girls. These data draw attention to difficulties in interpreting observational studies in young children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: The aetiology of the development of type 2 diabetes remains unresolved. In the present study, we assessed whether an impairment of insulin-mediated microvascular perfusion occurs early in the onset of insulin resistance. Materials and methods: Hooded Wistar rats were fed either a normal diet (ND) or a high-fat diet (HFD) for 4 weeks. Anaesthetized animals were subjected to an isoglycaemic hyperinsulinaemic clamp (3 or 10 mU/min/kg × 2 h), and measurements were made of glucose infusion rate (GIR), hindleg glucose uptake, muscle glucose uptake by 2-deoxy-d-glucose (R′g), glucose appearance (Ra), glucose disappearance (Rd), femoral blood flow (FBF) and hindleg 1-methylxanthine disappearance (1-MXD, an index of microvascular perfusion). Results: Compared with ND-fed animal, HFD feeding led to a mild increase in fasting plasma glucose and plasma insulin, without an increase in total body weight. During the clamps, HFD rats showed an impairment of insulin-mediated action on GIR, hindleg glucose uptake, R′g, Ra, Rd and FBF, with a greater loss of insulin responsiveness at 3 mU/min/kg than at 10 mU/min/kg. The HFD also impaired insulin-mediated microvascular perfusion as assessed by 1-MXD. Interestingly, 1-MXD was the only measurement that remained unresponsive to the higher dose of 10 mU/min/kg insulin. Conclusions: We conclude that the early stage of insulin resistance is characterized by an impairment of the insulin-mediated microvascular responses in skeletal muscle. This is likely to cause greater whole body insulin resistance by limiting the delivery of hormones and nutrients to muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose
As impaired glucose metabolism may arise progressively during childhood, we sought to determine whether the introduction of specialist-taught school physical education (PE) based on sound educational principles could improve insulin resistance (IR) in elementary school children.

Methods
In this 4-yr cluster-randomized intervention study, participants were 367 boys and 341 girls (mean age = 8.1 yr, SD = 0.35) initially in grade 2 in 29 elementary schools situated in suburbs of similar socioeconomic status. In 13 schools, 100 min·wk−1 of PE, usually conducted by general classroom teachers, was replaced with two classes per week taught by visiting specialist PE teachers; the remaining schools formed the control group. Teacher and pupil behavior were recorded, and measurements in grades 2, 4, and 6 included fasting blood glucose and insulin to calculate the homeostatic model of IR, percent body fat, physical activity, fitness, and pubertal development.

Results
On average, the intervention PE classes included more fitness work than the control PE classes (7 vs 1 min, P < 0.001) and more moderate physical activity (17 vs 10 min, P < 0.001). With no differences at baseline, by grade 6, the intervention had lowered IR by 14% (95% confidence interval = 1%–31%) in the boys and by 9% (95% confidence interval = 5%–26%) in the girls, and the percentage of children with IR greater than 3, a cutoff point for metabolic risk, was lower in the intervention than the control group (combined, 22% vs 31%, P = 0.03; boys, 12% vs 21%, P = 0.06; girls, 32% vs 40%, P = 0.05).

Conclusions
Specialist-taught primary school PE improved IR in community-based children, thereby offering a primordial preventative strategy that could be coordinated widely although a school-based approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional views on the metabolic derangements underlying insulin resistance and Type 2 diabetes have been largely “glucocentric” in nature, focusing on the hyperglycemic and/or hyperinsulinemic states that result from impaired glucose tolerance. But in addition to glucose intolerance, there is a coordinated breakdown in lipid dynamics in individuals with insulin resistance, manifested by elevated levels of circulating free fatty acids, diminished rates of lipid oxidation, and excess lipid accumulation in skeletal muscle and/or liver. This review examines the premise that an oversupply and/or accumulation of lipid directly inhibits insulin action on glucose metabolism via changes at the level of substrate competition, enzyme regulation, intracellular signaling, and/or gene transcription. If a breakdown in lipid dynamics is causal in the development of insulin resistance (rather than a coincidental feature resulting from it), it should be possible to demonstrate that interventions that improve lipid homeostasis cause reciprocal changes in insulin sensitivity. Accordingly, the efficacy of aerobic endurance training in human subjects in mediating the association between deranged lipid metabolism and insulin resistance will be examined. It will be demonstrated that aerobic exercise training is a potent and effective primary intervention strategy in the prevention and treatment of individuals with insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To examine whether genes associated with cellular defense against oxidative stress are associated with insulin sensitivity, patients with type 2 diabetes (n = 7) and age-matched (n = 5) and young (n = 9) control subjects underwent a euglycemic-hyperinsulinemic clamp for 120 min. Muscle samples were obtained before and after the clamp and analyzed for heat shock protein (HSP)72 and heme oxygenase (HO)-1 mRNA, intramuscular triglyceride content, and the maximal activities of β-hyroxyacyl-CoA dehydrogenase (β-HAD) and citrate synthase (CS). Basal expression of both HSP72 and HO-1 mRNA were lower (P < 0.05) by 33 and 55%, respectively, when comparing diabetic patients with age-matched and young control subjects, with no differences between the latter groups. Both basal HSP72 (r = 0.75, P < 0.001) and HO-1 (r = 0.50, P < 0.05) mRNA expression correlated with the glucose infusion rate during the clamp. Significant correlations were also observed between HSP72 mRNA and both β-HAD (r = 0.61, P < 0.01) and CS (r = 0.65, P < 0.01). HSP72 mRNA was induced (P < 0.05) by the clamp in all groups. Although HO-1 mRNA was unaffected by the clamp in both the young and age-matched control subjects, it was increased (P < 0.05) ∼70-fold in the diabetic patients after the clamp. These data demonstrate that genes involved in providing cellular protection against oxidative stress are defective in patients with type 2 diabetes and correlate with insulin-stimulated glucose disposal and markers of muscle oxidative capacity. The data provide new evidence that the pathogenesis of type 2 diabetes involves perturbations to the antioxidant defense mechanism within skeletal muscle.