934 resultados para homoclinic chaos
Resumo:
Polynomial Chaos Expansion with Latin Hypercube sampling is used to study the effect of material uncertainty on vibration control of a smart composite plate with piezoelectric sensors/actuators. Composite material properties and piezoelectric coefficients are considered as independent and normally distributed random variables. Numerical results show substantial variation in structural dynamic response due to material uncertainty of active vibration control system. This change in response due to material uncertainty can be compensated by actively tuning the feedback control system. Numerical results also show variation in dispersion of dynamic characteristics and control parameters with respect to ply angle and stacking sequence.
Resumo:
This work is a continuation of our efforts to quantify the irregular scalar stress signals from the Ananthakrishna model for the Portevin-Le Chatelier instability observed under constant strain rate deformation conditions. Stress related to the spatial average of the dislocation activity is a dynamical variable that also determines the time evolution of dislocation densities. We carry out detailed investigations on the nature of spatiotemporal patterns of the model realized in the form of different types of dislocation bands seen in the entire instability domain and establish their connection to the nature of stress serrations. We then characterize the spatiotemporal dynamics of the model equations by computing the Lyapunov dimension as a function of the drive parameter. The latter scales with the system size only for low strain rates, where isolated dislocation bands are seen, and at high strain rates, where fully propagating bands are seen. At intermediate applied strain rates corresponding to the partially propagating bands, the Lyapunov dimension exhibits two distinct slopes, one for small system sizes and another for large. This feature is rationalized by demonstrating that the spatiotemporal patterns for small system sizes are altered from the partially propagating band types to isolated burst type. This in turn allows us to reconfirm that low-dimensional chaos is projected from the stress signals as long as there is a one-to-one correspondence between the bursts of dislocation bands and the stress drops. We then show that the stress signals in the regime of partially to fully propagative bands have features of extensive chaos by calculating the correlation dimension density. We also show that the correlation dimension density also depends on the system size. A number of issues related to the system size dependence of the Lyapunov dimension density and the correlation dimension density are discussed.
Resumo:
We review the spatio-temporal dynamical features of the Ananthakrishna model for the Portevin-Le Chatelier effect, a kind of plastic instability observed under constant strain rate deformation conditions. We then establish a qualitative correspondence between the spatio-temporal structures that evolve continuously in the instability domain and the nature of the irregularity of the scalar stress signal. Rest of the study is on quantifying the dynamical information contained in the stress signals about the spatio-temporal dynamics of the model. We show that at low applied strain rates, there is a one-to-one correspondence with the randomly nucleated isolated bursts of mobile dislocation density and the stress drops. We then show that the model equations are spatio-temporally chaotic by demonstrating the number of positive Lyapunov exponents and Lyapunov dimension scale with the system size at low and high strain rates. Using a modified algorithm for calculating correlation dimension density, we show that the stress-strain signals at low applied strain rates corresponding to spatially uncorrelated dislocation bands exhibit features of low dimensional chaos. This is made quantitative by demonstrating that the model equations can be approximately reduced to space independent model equations for the average dislocation densities, which is known to be low-dimensionally chaotic. However, the scaling regime for the correlation dimension shrinks with increasing applied strain rate due to increasing propensity for propagation of the dislocation bands. The stress signals in the partially propagating to fully propagating bands turn to have features of extensive chaos.
Resumo:
We study models of interacting fermions in one dimension to investigate the crossover from integrability to nonintegrability, i.e., quantum chaos, as a function of system size. Using exact diagonalization of finite-sized systems, we study this crossover by obtaining the energy level statistics and Drude weight associated with transport. Our results reinforce the idea that for system size L -> infinity nonintegrability sets in for an arbitrarily small integrability-breaking perturbation. The crossover value of the perturbation scales as a power law similar to L-eta when the integrable system is gapless. The exponent eta approximate to 3 appears to be robust to microscopic details and the precise form of the perturbation. We conjecture that the exponent in the power law is characteristic of the random matrix ensemble describing the nonintegrable system. For systems with a gap, the crossover scaling appears to be faster than a power law.
Resumo:
Aims. In this work we search for the signatures of low-dimensional chaos in the temporal behavior of the Kepler-field blazar W2R 1946+42. Methods. We use a publicly available, similar to 160 000-point-long and mostly equally spaced light curve of W2R 1946+42. We apply the correlation integral method to both real datasets and phase randomized surrogates. Results. We are not able to confirm the presence of low-dimensional chaos in the light curve. This result, however, still leads to some important implications for blazar emission mechanisms, which are discussed.
Resumo:
Modeling the spatial variability that exists in pavement systems can be conveniently represented by means of random fields; in this study, a probabilistic analysis that considers the spatial variability, including the anisotropic nature of the pavement layer properties, is presented. The integration of the spatially varying log-normal random fields into a linear-elastic finite difference analysis has been achieved through the expansion optimal linear estimation method. For the estimation of the critical pavement responses, metamodels based on polynomial chaos expansion (PCE) are developed to replace the computationally expensive finite-difference model. The sparse polynomial chaos expansion based on an adaptive regression-based algorithm, and enhanced by the combined use of the global sensitivity analysis (GSA) is used, with significant savings in computational effort. The effect of anisotropy in each layer on the pavement responses was studied separately, and an effort is made to identify the pavement layer wherein the introduction of anisotropic characteristics results in the most significant impact on the critical strains. It is observed that the anisotropy in the base layer has a significant but diverse effect on both critical strains. While the compressive strain tends to be considerably higher than that observed for the isotropic section, the tensile strains show a decrease in the mean value with the introduction of base-layer anisotropy. Furthermore, asphalt-layer anisotropy also tends to decrease the critical tensile strain while having little effect on the critical compressive strain. (C) 2015 American Society of Civil Engineers.
Resumo:
We suggest a local pinning feedback control for stabilizing periodic pattern in spatially extended systems. Analytical and numerical investigations of this method for a system described by the one-dimensional complex Ginzburg-Landau equation are carried out. We found that it is possible to suppress spatiotemporal chaos by using a few pinning signals in the presence of a large gradient force. Our analytical predictions well coincide with numerical observations.
Resumo:
The transition process from steady convection to chaos is experimentally studied in thermocapillary convections of floating half zone. The onset of temperature oscillations in the liquid bridge of floating half zone and further transitions of the temporal convective behaviour are detected by measuring the temperature in the liquid bridge. The fast Fourier transform reveals the frequency and amplitude characteristics of the flow transition. The experimental results indicate the existence of a sequence of period-doubling bifurcations that culminate in chaos. The measured Feigenbaum numbers are delta(2) = 4.69 and delta(4) = 4.6, which are comparable with the theoretical asymptotic value delta = 4.669.
Resumo:
A criterion of spatial chaos occurring in lattice dynamical systems-heteroclinic cycle-is discussed. It is proved that if the system has asymptotically stable heteroclinic cycle, then it has asymptotically stable homoclinic point which implies spatial chaos.
Resumo:
Synchronous chaos is investigated in the coupled system of two Logistic maps. Although the diffusive coupling admits all synchronized motions, the stabilities of their configurations are dependent on the transverse Lyapunov exponents while independent of the longitudinal Lyapunov exponents. It is shown that synchronous chaos is structurally stable with respect to the system parameters. The mean motion is the pseudo-orbit of an individual local map so that its dynamics can be described by the local map. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Free surface waves in a cylinder of liquid under vertical excitation with slowly modulated amplitude are investigated in the current paper. It is shown by both theoretical analysis and numerical simulation that chaos may occur even for a single mode with modulation which can be used to explain Gollub and Meyer's experiment. The implied resonant mechanism accounting for this phenomenon is further elucidated.
Resumo:
The systems with some system parameters perturbed are investigated. These systems might exist in nature or be obtained by perturbation or truncation theory. Chaos might be suppressed or induced. Some of these dynamical systems exhibit extraordinary long transients, which makes the temporal structure seem sensitively dependent on initial conditions in finite observation time interval.
Resumo:
A coupled map lattices with convective nonlinearity or, for short, Convective Coupled Map (CCM) is proposed in this paper to simulate spatiotemporal chaos in fluid hows. It is found that the parameter region of spatiotemporal chaos can be determined by the maximal Liapunov exponent of its complexity time series. This simple model implies a similar physical mechanism for turbulence such that the route to spatiotemporal chaos in fluid hows can be envisaged.
Resumo:
We propose here a local exponential divergence plot which is capable of providing an alternative means of characterizing a complex time series. The suggested plot defines a time-dependent exponent and a ''plus'' exponent. Based on their changes with the embedding dimension and delay time, a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time, and the largest Lyapunov exponent has been obtained. When redefining the time-dependent exponent LAMBDA(k) curves on a series of shells, we have found that whether a linear envelope to the LAMBDA(k) curves exists can serve as a direct dynamical method of distinguishing chaos from noise.