832 resultados para homeostatic model assessment
Resumo:
Background: Progression of the metabolic syndrome (MetS) is determined by genetic and environmental factors. Gene-environment interactions may be important in modulating the susceptibility to the development of MetS traits. Objective: Gene-nutrient interactions were examined in MetS subjects to determine interactions between single nucleotide polymorphisms (SNPs) in the adiponectin gene (ADIPOQ) and its receptors (ADIPOR1 and ADIPOR2) and plasma fatty acid composition and their effects on MetS characteristics. Design: Plasma fatty acid composition, insulin sensitivity, plasma adiponectin and lipid concentrations, and ADIPOQ, ADIPOR1, and ADIPOR2 SNP genotypes were determined in a cross-sectional analysis of 451 subjects with the MetS who participated in the LIPGENE (Diet, Genomics, and the Metabolic Syndrome: an Integrated Nutrition, Agro-food, Social, and Economic Analysis) dietary intervention study and were repeated in 1754 subjects from the LIPGENE-SU.VI.MAX (SUpplementation en VItamines et Mineraux AntioXydants) case-control study (http://www.ucd.ie/lipgene). Results: Single SNP effects were detected in the cohort. Triacylglycerols, nonesterified fatty acids, and waist circumference were significantly different between genotypes for 2 SNPs (rs266729 in ADIPOQ and rs10920533 in ADIPOR1). Minor allele homozygotes for both of these SNPs were identified as having degrees of insulin resistance, as measured by the homeostasis model assessment of insulin resistance, that were highly responsive to differences in plasma saturated fatty acids (SFAs). The SFA-dependent association between ADIPOR1 rs10920533 and insulin resistance was replicated in cases with MetS from a separate independent study, which was an association not present in controls. Conclusions: A reduction in plasma SFAs could be expected to lower insulin resistance in MetS subjects who are minor allele carriers of rs266729 in ADIPOQ and rs10920533 in ADIPOR1. Personalized dietary advice to decrease SFA consumption in these individuals may be recommended as a possible therapeutic measure to improve insulin sensitivity. This trial was registered at clinicaltrials.
Resumo:
OBJECTIVE To investigate the relation between serum concentration of 25-hydroxyvitamin D [25(OH)D] and insulin action and secretion. RESEARCH DESIGN AND METHODS In a cross-sectional study of 446 Pan-European subjects with the metabolic syndrome, insulin action and secretion were assessed by homeostasis model assessment (HOMA) indexes and intravenous glucose tolerance test to calculate acute insulin response, insulin sensitivity, and disposition index. Serum 25(OH)D was measured by high-performance liquid chromatography/mass spectrometry. RESULTS The 25(OH)D3 concentration was 57.1 ± 26.0 nmol/l (mean ± SD), and only 20% of the subjects had 25(OH)D3 levels ≥75 nmol/l. In multiple linear analyses, 25(OH)D3 concentrations were not associated with parameters of insulin action or secretion after adjustment for BMI and other covariates. CONCLUSIONS In a large sample of subjects with the metabolic syndrome, serum concentrations of 25(OH)D3 did not predict insulin action or secretion. Clear evidence that D vitamin status directly influences insulin secretion or action is still lacking.
Resumo:
Background: Calpain-10 protein (intracellular Ca2+-dependent cysteine protease) may play a role in glucose metabolism, pancreatic β cell function, and regulation of thermogenesis. Several CAPN10 polymorphic sites have been studied for their potential use as risk markers for type 2 diabetes and the metabolic syndrome (MetS). Fatty acids are key metabolic regulators that may interact with genetic factors and influence glucose metabolism. Objective: The objective was to examine whether the genetic variability at the CAPN10 gene locus is associated with the degree of insulin resistance and plasma fatty acid concentrations in subjects with MetS. Design: The insulin sensitivity index, glucose effectiveness, insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)], insulin secretion (disposition index, acute insulin response, and HOMA of β cell function), plasma fatty acid composition, and 5 CAPN10 single nucleotide polymorphisms (SNPs) were determined in a cross-sectional analysis of 452 subjects with MetS participating in the LIPGENE dietary intervention cohort. Results: The rs2953171 SNP interacted with plasma total saturated fatty acid (SFA) concentrations, which were significantly associated with insulin sensitivity (P < 0.031 for fasting insulin, P < 0.028 for HOMA-IR, and P < 0.012 for glucose effectiveness). The G/G genotype was associated with lower fasting insulin concentrations, lower HOMA-IR, and higher glucose effectiveness in subjects with low SFA concentrations (below the median) than in subjects with the minor A allele (G/A and A/A). In contrast, subjects with the G/G allele with the highest SFA concentrations (above the median) had higher fasting insulin and HOMA-IR values and lower glucose effectiveness than did subjects with the A allele. Conclusion: The rs2953171 polymorphism at the CAPN10 gene locus may influence insulin sensitivity by interacting with the plasma fatty acid composition in subjects with MetS. This trial was registered at clinicaltrials.gov as NCT00429195.
Resumo:
Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been of considerable interest, due to their potential to reduce metabolic syndrome (MetS) risk. Objective To examine whether genetic variability at the GCKR gene locus was associated with the degree of insulin resistance, plasma concentrations of C-reactive protein (CRP) and n-3 PUFA in MetS subjects. Design Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-B, plasma concentrations of C-peptide, CRP, fatty acid composition and the GCKR rs1260326-P446L polymorphism, were determined in a cross-sectional analysis of 379 subjects with MetS participating in the LIPGENE dietary cohort. Results Among subjects with n-3 PUFA levels below the population median, carriers of the common C/C genotype had higher plasma concentrations of fasting insulin (P = 0.019), C-peptide (P = 0.004), HOMA-IR (P = 0.008) and CRP (P = 0.032) as compared with subjects carrying the minor T-allele (Leu446). In contrast, homozygous C/C carriers with n-3 PUFA levels above the median showed lower plasma concentrations of fasting insulin, peptide C, HOMA-IR and CRP, as compared with individuals with the T-allele. Conclusions We have demonstrated a significant interaction between the GCKR rs1260326-P446L polymorphism and plasma n-3 PUFA levels modulating insulin resistance and inflammatory markers in MetS subjects. Further studies are needed to confirm this gene-diet interaction in the general population and whether targeted dietary recommendations can prevent MetS in genetically susceptible individuals.
Resumo:
Logistic models are studied as a tool to convert dynamical forecast information (deterministic and ensemble) into probability forecasts. A logistic model is obtained by setting the logarithmic odds ratio equal to a linear combination of the inputs. As with any statistical model, logistic models will suffer from overfitting if the number of inputs is comparable to the number of forecast instances. Computational approaches to avoid overfitting by regularization are discussed, and efficient techniques for model assessment and selection are presented. A logit version of the lasso (originally a linear regression technique), is discussed. In lasso models, less important inputs are identified and the corresponding coefficient is set to zero, providing an efficient and automatic model reduction procedure. For the same reason, lasso models are particularly appealing for diagnostic purposes.
Resumo:
Objective To highlight the contribution of the gut microbiota to the modulation of host metabolism by dietary inulin-type fructans (ITF prebiotics) in obese women. Methods A double blind, placebo controlled, intervention study was performed with 30 obese women treated with ITF prebiotics (inulin/oligofructose 50/50 mix; n=15) or placebo (maltodextrin; n=15) for 3 months (16 g/day). Blood, faeces and urine sampling, oral glucose tolerance test, homeostasis model assessment and impedancemetry were performed before and after treatment. The gut microbial composition in faeces was analysed by phylogenetic microarray and qPCR analysis of 16S rDNA. Plasma and urine metabolic profiles were analysed by 1H-NMR spectroscopy. Results Treatment with ITF prebiotics, but not the placebo, led to an increase in Bifidobacterium and Faecalibacterium prausnitzii; both bacteria negatively correlated with serum lipopolysaccharide levels. ITF prebiotics also decreased Bacteroides intestinalis, Bacteroides vulgatus and Propionibacterium, an effect associated with a slight decrease in fat mass and with plasma lactate and phosphatidylcholine levels. No clear treatment clustering could be detected for gut microbial analysis or plasma and urine metabolomic profile analyses. However, ITF prebiotics led to subtle changes in the gut microbiota that may importantly impact on several key metabolites implicated in obesity and/or diabetes. Conclusions ITF prebiotics selectively changed the gut microbiota composition in obese women, leading to modest changes in host metabolism, as suggested by the correlation between some bacterial species and metabolic endotoxaemia or metabolomic signatures.
Resumo:
BACKGROUND: this study examined the association of -866G/A, Ala55Val, 45bpI/D, and -55C/T polymorphisms at the uncoupling protein (UCP) 3-2 loci with type 2 diabetes in Asian Indians. METHODS: a case-control study was performed among 1,406 unrelated subjects (487 with type 2 diabetes and 919 normal glucose-tolerant [NGT]), chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in Southern India. The polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. Haplotype frequencies were estimated using an expectation-maximization algorithm. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. RESULTS: the genotype (P = 0.00006) and the allele (P = 0.00007) frequencies of Ala55Val of the UCP2 gene showed a significant protective effect against the development of type 2 diabetes. The odds ratios (adjusted for age, sex, and body mass index) for diabetes for individuals carrying Ala/Val was 0.72, and that for individuals carrying Val/Val was 0.37. Homeostasis insulin resistance model assessment and 2-h plasma glucose were significantly lower among Val-allele carriers compared to the Ala/Ala genotype within the NGT group. The genotype (P = 0.02) and the allele (P = 0.002) frequencies of -55C/T of the UCP3 gene showed a significant protective effect against the development of diabetes. The odds ratio for diabetes for individuals carrying CT was 0.79, and that for individuals carrying TT was 0.61. The haplotype analyses further confirmed the association of Ala55Val with diabetes, where the haplotypes carrying the Ala allele were significantly higher in the cases compared to controls. CONCLUSIONS: Ala55Val and -55C/T polymorphisms at the UCP3-2 loci are associated with a significantly reduced risk of developing type 2 diabetes in Asian Indians.
Resumo:
The United Nations Framework Convention on Climate Change (UNFCCC) has established the Warsaw International Mechanism (WIM) to deal with loss and damage associated with climate change impacts, including extreme events, in developing countries. It is not yet known whether events will need to be attributed to anthropogenic climate change to be considered under the WIM. Attribution is possible for some extreme events- a climate model assessment can estimate how greenhouse gas emissions have affected the likelihood of their occurrence. Dialogue between scientists and stakeholders is required to establish whether, and how, this science could play a role in the WIM.
Resumo:
Background: Previous data support the benefits of reducing dietary saturated fatty acids (SFAs) on insulin resistance (IR) and other metabolic risk factors. However, whether the IR status of those suffering from metabolic syndrome (MetS) affects this response is not established. OBJECTIVE: Our objective was to determine whether the degree of IR influences the effect of substituting high-saturated fatty acid (HSFA) diets by isoenergetic alterations in the quality and quantity of dietary fat on MetS risk factors. DESIGN: In this single-blind, parallel, controlled, dietary intervention study, MetS subjects (n = 472) from 8 European countries classified by different IR levels according to homeostasis model assessment of insulin resistance (HOMA-IR) were randomly assigned to 4 diets: an HSFA diet; a high-monounsaturated fatty acid (HMUFA) diet; a low-fat, high-complex carbohydrate (LFHCC) diet supplemented with long-chain n-3 polyunsaturated fatty acids (1.2 g/d); or an LFHCC diet supplemented with placebo for 12 wk (control). Anthropometric, lipid, inflammatory, and IR markers were determined. RESULTS: Insulin-resistant MetS subjects with the highest HOMA-IR improved IR, with reduced insulin and HOMA-IR concentrations after consumption of the HMUFA and LFHCC n-3 diets (P < 0.05). In contrast, subjects with lower HOMA-IR showed reduced body mass index and waist circumference after consumption of the LFHCC control and LFHCC n-3 diets and increased HDL cholesterol concentrations after consumption of the HMUFA and HSFA diets (P < 0.05). MetS subjects with a low to medium HOMA-IR exhibited reduced blood pressure, triglyceride, and LDL cholesterol levels after the LFHCC n-3 diet and increased apolipoprotein A-I concentrations after consumption of the HMUFA and HSFA diets (all P < 0.05). CONCLUSIONS: Insulin-resistant MetS subjects with more metabolic complications responded differently to dietary fat modification, being more susceptible to a health effect from the substitution of SFAs in the HMUFA and LFHCC n-3 diets. Conversely, MetS subjects without IR may be more sensitive to the detrimental effects of HSFA intake. The metabolic phenotype of subjects clearly determines response to the quantity and quality of dietary fat on MetS risk factors, which suggests that targeted and personalized dietary therapies may be of value for its different metabolic features.
Resumo:
This cross-sectional study determined the influence of antiretroviral therapy (ART) on the lipid profile and insulin sensitivity of 119 perinatally HIV-infected Brazilian patients aged 6-19 years. Inadequate high-density lipoprotein cholesterol (HDL-c) concentrations were observed in 81.4% of patients. High concentrations of total cholesterol (TC), low-density lipoprotein cholesterol (LDI.-c) and triglycerides (TG) were found in 33.9%, 9.7% and 35.6% of patients, respectively. There were statistically significant differences in mean concentrations of TC (P=0.004), HDL-c (P=0.015) and LDL-c (P=0.028) among children (< 10 years), early adolescents (10-14 years) and late adolescents (15-19 years). Children presented the highest mean concentrations of TC and LDL-c, and patients in late adolescence presented the lowest concentrations of HDL-c. Insulin sensitivity, assessed by the Homeostasis Model Assessment (HOMA) index, was diagnosed in 16.7% of patients, with a statistically higher proportion (P=0.034) of insulin-resistant children (33.3%) compared with adolescents (12.5%). There was a statistically significant association between TG concentrations and use of ART regimens containing protease inhibitors (PI) (P=0.0003). Children presented a higher prevalence of insulin resistance and dyslipidaemia compared with adolescents, suggesting that ART, especially Pls, may lead to metabolic complications. (C) 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
Resumo:
In addition to their expected effects on lipid profile, lipid-lowering agents may reduce cardiovascular events because of effects on nonclassic risk factors such as insulin resistance and inflammation. Ezetimibe specifically blocks the absorption of dietary and biliary cholesterol as well as plant sterols. Although it is known that an additional reduction of low-density lipoprotein cholesterol (LDL-C) levels can be induced by the combination of ezetimibe with statins, it is not known if this can enhance some pleiotropic effects, which may be useful in slowing the atherosclerotic process. This study assessed the effects of simvastatin and ezetimibe, in monotherapy or in combination, on markers of endothelial function and insulin sensitivity. Fifty prediabetic subjects with normo- or mild-to-moderate hypercholesterolemia were randomly allocated to 2 groups receiving either ezetimibe (10 mg/d) or simvastatin (20 mg/d) for 12 weeks, after which the drugs were combined for both groups for an additional 12-week period. Clinical and laboratory parameters were measured at baseline and after 12 and 24 weeks of therapy. Homeostasis model assessment of insulin resistance index and the area under the curve of insulin were calculated. As expected, both groups receiving drugs in isolation significantly reduced total cholesterol, LDL-C, apolipoprotein B, and triglyceride levels; and additional reductions were found after the combination period (P <.05). After 12 weeks of monotherapy, plasminogen activator inhibitor-1 levels and urinary albumin excretion were lower in the simvastatin than in the ezetimibe group. No change in homeostasis model assessment of insulin resistance index, area under the curve of insulin, and adiponectin levels was observed tiller either the monotherapies or the combined therapy. However, simvastatin combined with ezetimibe provoked significant reductions in E-selectin and intravascular cellular adhesion molecule-1 levels that were independent of LDL-C changes. Our findings support claims that simvastatin may be beneficial in preserving endothelial function in prediabetic subjects with normo- or mild-to-moderate hypercholesterolemia. Alternatively, a deleterious effect of ezetimibe on the endothelial function is suggested, considering the increase in intravascular cellular adhesion molecule I and E-selectin levels. Simvastatin and ezetimibe, in isolation or in combination, do not interfere with insulin sensitivity. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Background Dietary calcium intake has been described as being a negative contributor to adiposity. In adolescents, this relationship is not well established. The objectives of the present study were to compare the calcium intake of normal-weight and obese adolescents and to evaluate its relationship with adiposity and insulin resistance. Methods A cross-sectional analysis of 96 post-pubertal adolescents; 47 normal weight and 49 obese, mean age 16.6 (SD +/- 1.3) years. Body composition was assessed by dual-energy X-ray absorptiometry. Dietary intake was evaluated using a 3-day dietary record. The biochemical evaluation comprised the measurements of serum lipids, lipoproteins, glucose and insulin. Insulin resistance was calculated using the Homeostasis Model Assessment of Insulin resistance (HOMA-IR). Results The mean calcium intake, adjusted for energy, was lower in obese adolescents, 585.2 (+/- 249.9) mg, than in normal weight adolescents, 692.1 (+/- 199.5) mg. Only 4% of adolescents had an adequate intake of calcium. Calcium intake was inversely associated with body trunk fat, insulin and HOMA-IR in the obese group. The quartile analysis of calcium intake provided evidence that girls in the highest quartile had decreased adiposity and insulin resistance. Conclusions This study showed a negative relationship between calcium intake and body fat and insulin resistance, mainly in obese girls, and demonstrates the importance of an increased dietary calcium intake.
Resumo:
Epidemiological studies suggest that glucocorticoid excess in the fetus may contribute to the pathophysiology of cardiovascular diseases in adulthood. However, the impact of maternal glucocorticoid on the cardiovascular system of the offspring has not been much explored in studies involving humans, especially in childhood. The objective of this study was to assess the influence of maternal cortisol concentrations on child arterial elasticity. One hundred and thirty pregnant women followed from 1997 to 2000, and respective children 5-7 years of age followed from 2004 to 2006 were included in the study. Maternal cortisol was determined in saliva by an enzyme immunoassay utilizing the mean concentration of nine samples of saliva. Arterial elasticity was assessed by the large artery elasticity index (LAEI; the capacitive elasticity of large arteries) by recording radial artery pulse wave, utilizing the equipment HDI/PulseWave CR-2000 Cardiovascular Profiling System (R). The nutritional status of the children was determined by the body mass index (BMI). Insulin concentration was assessed by chemiluminescence, and insulin resistance by the homeostasis model assessment. Blood glucose, total cholesterol and fractions (LDL-c and HDL-c) and triglyceride concentrations were determined by automated enzymatic methods. The association between maternal cortisol and child arterial elasticity was assessed by multivariate linear regression analysis. There was a statistically significant association between maternal cortisol and LAEI (P=0.02), controlling for birth weight, age, BMI and HDL-c of the children. This study suggests that exposure to higher glucocorticoid concentrations in the prenatal period is associated to lower arterial elasticity in childhood, an earlier cardiovascular risk marker.
Resumo:
Background: Hyperglycemia, insulin resistance and hyperleptinemia are some of the consequences of obesity. Gastric bypass for morbid obesity provides gastric restriction with decreased energy absorption. To confirm and extend previous reports in the literature, We evaluated the plasma glucose, serum insulin and leptin and insulin resistance of patients preoperatively and 1 and 3 months after Roux-en-Y gastric bypass (RYGBP).Methods: We determined body mass index (BMI), plasma glucose (glucose-oxidase method), serum leptin (immunoassay) and insulin (chemiluminescent immunometric assay), and insulin resistance index (IRI) by Homeostasis Model Assessment (HOMA) of 20 patients with morbid obesity both preoperatively and 1 and 3 months after RYGBP.Results: Patients showed a mean decrease in weight of 8 kg/month. Glycemia was above reference levels in 65% of the preoperative patients but dropped significantly 1 month postoperatively, serum insulin and leptin levels and the HOMA index also decreasing significantly in the same period. The percentage of patients with preoperative elevated serum insulin and leptin relative to reference levels decreased significantly following RYGBP. We also observed a weak but significant correlation between BMI and glucose, BMI and insulin, and leptin and insulin.Conclusions: the beneficial effects of bariatric surgery are already noticeable 1 month postoperatively, the reduction in insulin levels being more important for leptin reduction than decreased BMI. Leptin appeared to be subject to multifactorial control and showed a larger reduction than body weight.
Resumo:
OBJETIVO: avaliar a influência dos indicadores antropométricos sobre os marcadores de risco cardiovascular e metabólico para doenças crônicas não-transmissíveis em mulheres na pós-menopausa. MÉTODOS: realizou-se estudo clínico transversal, com 120 mulheres sedentárias na pós-menopausa (com idades entre 45 e 70 anos e última menstruação há, pelo menos, 12 meses). Foram excluídas as diabéticas insulino-dependentes e usuárias de estatinas ou terapia hormonal até seis meses prévios. Para avaliação antropométrica, foram obtidos peso, estatura, índice de massa corpórea (IMC=peso/altura²) e circunferência da cintura (CC). As variáveis metabólicas avaliadas foram colesterol total (CT), HDL, LDL, triglicérides (TG), glicemia e insulina, para os cálculos do índice aterogênico plasmático (IAP) e resistência insulínica (Homeostasis model assessment-insulin resistance, HOMA-IR). Na análise estatística, utilizara-se análise de variância one-way (ANOVA) e Odds Ratio (OR). RESULTADOS: os dados médios caracterizaram amostra com sobrepeso, com obesidade central e dislipidêmica. Sobrepeso e obesidade estiveram presentes em 77,1% e deposição central de gordura ocorreu em 87,3% das participantes. Os valores médios de CT, LDL e TG estavam acima do recomendável em 67,8, 55,9 e 45,8% das mulheres, respectivamente, com HDL abaixo dos valores adequados em 40,7%. Valores de CC >88 cm ocorreram em 14,8% das mulheres eutróficas, 62,5% no grupo com sobrepeso e 100% nas obesas (p>0,05). Os valores médios de IAP, TG e HOMA-IR aumentaram significativamente com o aumento do IMC e da CC, enquanto que o HDL diminuiu (p<0,05). Na presença da CC >88 cm, encontrou-se risco de 5,8 (IC95%=2,3-14,8), 2,61 (IC95%=1,2-5,78), 3,4 (IC95%=1,2-9,7) e 3,6 (IC95%=1,3-10,3) para HDL reduzido, hipertrigliceridemia, IAP elevado e resistência a insulina, respectivamente (p<0,05). O IMC >30 kg/m² associou-se apenas com HDL reduzido (OR=3,1; IC95%=1,44-6,85). CONCLUSÕES: a associação de duas medidas antropométricas (CC e IMC) foi eficiente para adequado diagnóstico de obesidade relacionada a alterações metabólicas em mulheres na pós-menopausa. Contudo, a simples avaliação da CC pode ser indicativo do risco cardiovascular e metabólico das doenças crônicas não transmissíveis.