989 resultados para holocentric chromosomes
Resumo:
Procura-se mostrar, no presente artigo, que nenhuma teoria micromerista consegue explicar os fenômenos genéticos, por não ser possível conferir a partículas a independência funcional relacionada com o trabalho que devem exercer de maneira específica no organismo. O fato dos gens se encontrarem em tôdas as células do organismo em desenvolvimento, mostra que essas entidades desenvolvem distintas atividades em diferentes tecidos. Mas acontece, que nem a microscopia eletrônica, nem a bioquímica, consegue descobrir nos cormossômios algo que possa corresponder ao conceito de gen-conta-de rosário da genética clássica. Entretanto, o cromossômio considerado como um todo pode com vantagem substituir os gens no seu papel de determinar os caracteres do organismo. Admitindo-se que os cromossômios se determinam com as células de que fazem parte, uns para trabalhar nos esboços de asas, outros nos de olhos, patas ou outras estruturas, compreende-se fàcilmente, que, por intermédio de distintos membros do clone que se inicia com a primeira divisão do ovo, uma dada sorte de cromossômio, funcionando como um todo especializado, pode exercer as atividades específicas que lhe são atribuídas. E isso, de pleno acôrdo com a embriologia experimental.
Resumo:
Using conventional staining with acetic orcein and C-banding techniques it was investigated constitutive heterochromatin chromosomal polymorphisms and the mitotic and the meiotic behavior of male and female chromosomes of Boophilus microplus (Canestrini, 1887). Some differences were detected in the population of southern Brazil as compared to the data of other authors for populations in other latitudes. The differences being mainly concerned with the distribution of constitutive centromeric heterochromatin and variation in the length of heterochromatic blocks in the pericentromeric regions of some chromosome pairs.
Molecular phylogenies, chromosomes and dispersion in Brazilian akodontines (Rodentia, Sigmodontinae)
Resumo:
A new molecular phylogeny for akodontine rodents from Brazil was proposed. The phylogenetic tree was enriched with the area of occurrence and with information on the karyotype of the samples. Based on this enriched tree, and with a described methodology, hypotheses were proposed on the karyotype and area of occurrence of the ancestors of each Clade. Thus it was possible to discuss hypotheses on chromosome evolution of the group, and on dispersion events from the "area of original differentiation" of akodontines in the Andes. Chromosome evolution started with high diploid numbers (2n=52) and showed a tendency to reduction (until 2n=14 in more recent clades). Independent side-branches of the tree showed 2n reduction and in one case the 2n increased. At least four dispersion events from the Andes down to South-eastern Brazil were proposed. The results should suggest the direction of new studies on comparative karyology.
Resumo:
The molecular karyotypes for 20 reference strais of species complexes of Leishmania were determined by contour-clamped homogeneous eletric field (CHEF) electrosphoresis. Determination of number/position of chromosome-sized bands and chromosomal DNA locations of house-keeping genes were the two criteria used for differentiating and classifying the Leishmania species. We have established two gel running conditions of optimal separation of chromosomes, wich resolved DNA molecules as large as 2,500 kilobase pairs (kb). Chromosomes were polymorphic in number (22-30) and size (200-2,500 kb) of bands among members of five complexes of Leishmania. Although each stock had a distinct karyotype, in general the differences found between strains and/or species within each complex were not clear enough for parasite identification. However, each group showed a specific number of size-concordant DNA molecules, wich allowed distinction among the Leishmania complex parasites. Clear differences between the Old and New world groups of parasites or among some New World Leishmania species were also apparent in relation to the chromosome locations of beta-tubulin genes. Based on these results as well as data from other published studies the potencial of using DNA karyotype for identifying and classifying leishmanial field isolates is discussed.
Resumo:
Previous studies of subtelomeric regions in Plasmodium berghei led to the identification of subtelomeric repeats (2.3kb long) present in a variable number at many chromosomal ends. Both loss and increase in 2.3kb-repeat copy number are involved in chromosome-size polymorphisms. Subtelomeric losses leading to chromosome-size polymorphisms have been described by several authors in P.falciparum where the structure of subtelomeric regions is not known in detail. We therefore undertook their characterisation, by means of chromosome walking and jumping techniques, starting from the telomere-flanking sequence present in pPftel.1, the P.falciparum telomeric clone described by Vernick and McCutchan (1988). The results indicate that at least 20 (out of 28) chromosomal ends in P.falciparum 3D7 chromosomes share a subtelomeric region, about 40kb long, covering (but not limited to) the Rep20 region. Non repetitive, AT-rich portions flanking the Rep20 region on both sides are also conserved at most chromosomal ends.
Resumo:
Many protozoan parasites represent an important group of human pathogens. Pulsed Field Gradient Gel Electrophoresis (PFGE) analysis has been an important tool for fundamental genetic studies of parasites like Trypanosoma, Leishmania, Giardia or the human malaria parasite Plasmodium falciparum. We present PFGE conditions allowing a high resolution separation of chromosomes ranging from 500 to 4000 kb within a two day electrophoresis run. In addition, we present conditions for separating large chromosomes (2000-6000 kb) within 36 hr. We demontrate that the application of two dimentional PFGE (2D-PFGE) technique to parasite karyotypes is a very useful method for the analysis of dispersed gene families and comparative studies of the intrachomosomal genome organization
Resumo:
During recent years, several Leishmania infantum genes have been cloned and characterized. Here, we have summarized the available information on the gene organization and expression in this protozoan parasite. From a comparative analysis, the following outstanding features were found to be common to most of the genes characterized: tandemly organized genes with conserved coding regions and divergent untranslated regions, polycistronic transcription and post-transcriptional regulation of gene expression. The analysis of chromosomes of L. infantum by pulsed-field electrophoresis showed the existence of both size and number polymorphisms such that each strain has a distinctive molecular karyotype. Despite this variability, highly conserved physical linkage groups exists among different strains of L. infantum and even among Old World Leishmania species. Gene mapping on the L. infantum molecular karyotype evidenced a bias in chromosomal distribution of, at least, the evolutionary conserved genes
Resumo:
Cytological studies were made on larvae of Gigantodax marginalis, G. chilensis, G. fulvescens and Cnesia dissimilis from four creeks in Lanin National Park, Neuquen province, Argentina. Chromosome maps and idiograms of these species are presented. The following inversions were observed: G. marginalis: IL-1 (X-linked inversion), IL-2 (Y-linked inversion), IIS-1.2, IIL-1, IIIL-4,5; G. chilensis: IL-4 (X-linked inversion), IIS-1.2, IIIL-4,5; G. fulvescens:IL-1 (X-linked inversion), IL-3 (Y-linked inversion), IIS-1.2, IIL-1, IIIL-4,5; C. dissimilis: IL-1, IL-5, IIIL-1. Karyological information was used to construct a cladogram and Cnesia sp. Was found to show close resemblance to the three Gigantodax spp.
Resumo:
The blow flies Chrysomya putoria and C. megacephala have 2n=12 chromosomes, five metacentric pairs of autosomes and an XX/XY sex chromosome pair. There are no substantial differences in the karyotype morphology of these two species, except for the X chromosome which is subtelocentric in C. megacephala and metacentric in C. putoria and is about 1.4 times longer in C. putoria. All autosomes were characterized by the presence of a C band in the pericentromeric region; C. putoria also has an interstitial band in pair III. The sex chromosomes of both species were heterochromatic, except for a small region at the end of the long arm of the X chromosome. Ribosomal genes were detected in meiotic chromosomes by FISH and in both species the NOR was located on the sex chromosomes. These results confirm that C. putoria was the species introduced into Brazil in 1970s, and not C. chloropyga as formerly described.
Resumo:
Dipteran polytene chromosomes provide an excellent model for understanding in species complexes, as well as for structural and functional cytogenetics. The status of species in the Culex pipiens complex is controversial and the use of polytene chromosomes for cytogenetic analysis in the subfamily Culicinae has been difficult because of methodological problems. In this study, Malpighian tubule polytene chromosomes were obtained from young (0 to 12 h, 20ºC) and old (20 to 42 h, 28ºC) laboratory-bred C. pipiens quinquefasciatus pupae. The chromosome maps for this species were constructed and compared with published data for C. pipiens pipiens and C. p. quinquefasciatus. Although the banding patterns were conserved between subspecies, analysis of the structural variations in the bands and interbands revealed differences apparently related to the physiological stage and ecogeographical strain. The organization of the centromeric regions in larval and pupal chromosomes showed greater similarity to each other than did those of pupal and adult chromosomes. The use of pupal polytene chromosomes for in situ hybridization with vector competence probes is discussed.
Resumo:
Polytene chromosome preparations were obtained from larval, pupal and adult female Malpighian tubules of Aedes aegypti. The Malpighian tubules of the pupae (0-4 h old) from larvae reared at 20ºC provided the best cytogenetic analysis. The interaction of nucleic acids and proteins that influence the spreading of the chromosomes could be reduced with the preparation technique of the sheets submitted to a stronger treatment starting with the hypotony of tissue and successive bathings with acetic acid. A simple technique should facilitate molecular cytogenetics used in the location of resistance and vector competence genes.
Resumo:
Fluorescence in situ hybridization of Anopheles darlingi and A. nuneztovari demonstrated nucleolar organizer region activity at the end of the fourth larval instar, when the nucleolar organizer regions underwent gradual condensation. The heteromorphic sex chromosomes showed intraindividual size variation in the rDNA blocks located in the pericentromeric region and this coincided with the location of constitutive heterochromatin (C-banding).
Resumo:
Mammalian sex chromosomes stem from ancestral autosomes and have substantially differentiated. It was shown that X-linked genes have generated duplicate intronless gene copies (retrogenes) on autosomes due to this differentiation. However, the precise driving forces for this out-of-X gene "movement" and its evolutionary onset are not known. Based on expression analyses of male germ-cell populations, we here substantiate and extend the hypothesis that autosomal retrogenes functionally compensate for the silencing of their X-linked housekeeping parental genes during, but also after, male meiotic sex chromosome inactivation (MSCI). Thus, sexually antagonistic forces have not played a major role for the selective fixation of X-derived gene copies in mammals. Our dating analyses reveal that although retrogenes were produced ever since the common mammalian ancestor, selectively driven retrogene export from the X only started later, on the placental mammal (eutherian) and marsupial (metatherian) lineages, respectively. Together, these observations suggest that chromosome-wide MSCI emerged close to the eutherian-marsupial split approximately 180 million years ago. Given that MSCI probably reflects the spread of the recombination barrier between the X and Y, crucial for their differentiation, our data imply that these chromosomes became more widely differentiated only late in the therian ancestor, well after the divergence of the monotreme lineage. Thus, our study also provides strong independent support for the recent notion that our sex chromosomes emerged, not in the common ancestor of all mammals, but rather in the therian ancestor, and therefore are much younger than previously thought