972 resultados para histone deacetylase 1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

9-hydroxystearic acid (9-HSA) is an endogenous lipoperoxidation product and its administration to HT29, a colon adenocarcinoma cell line, induced a proliferative arrest in G0/G1 phase mediated by a direct activation of the p21WAF1 gene, bypassing p53. We have previously shown that 9-HSA controls cell growth and differentiation by inhibiting histone deacetylase 1 (HDAC1) activity, showing interesting features as a new anticancer drug. The interaction of 9-HSA with the catalytic site of the 3D model has been tested with a docking procedure: noticeably, when interacting with the site, the (R)-9-enantiomer is more stable than the (S) one. Thus, in this study, (R)- and (S)-9-HSA were synthesized and their biological activity tested in HT29 cells. At the concentration of 50 M (R)-9-HSA showed a stronger antiproliferative effect than the (S) isomer, as indicated by the growth arrest in G0/G1. The inhibitory effect of (S)-9-HSA on HDAC1, HDAC2 and HDAC3 activity was less effective than that of the (R)-9-HSA in vitro, and the inhibitory activity of both the (R)- and the (S)-9-HSA isomer, was higher on HDAC1 compared to HDAC2 and HDAC3, thus demonstrating the stereospecific and selective interaction of 9-HSA with HDAC1. In addition, histone hyperacetylation caused by 9-HSA treatment was examined by an innovative HPLC/ESI/MS method. Analysis on histones isolated from control and treated HT29 confirmed the higher potency of (R)-9-HSA compared to (S)-9-HSA, severely affecting H2A-2 and H4 acetylation. On the other side, it seemed of interest to determine whether the G0/G1 arrest of HT29 cell proliferation could be bypassed by the stimulation with the growth factor EGF. Our results showed that 9-HSA-treated cells were not only prevented from proliferating, but also showed a decreased [3H]thymidine incorporation after EGF stimulation. In this condition, HT29 cells expressed very low levels of cyclin D1, that didn’t colocalize with HDAC1. These results suggested that the cyclin D1/HDAC1 complex is required for proliferation. Furthermore, in the effort of understanding the possible mechanisms of this effect, we have analyzed the degree of internalization of the EGF/EGFR complex and its interactions with HDAC1. EGF/EGFR/HDAC1 complex quantitatively increases in 9-HSA-treated cells but not in serum starved cells after EGF stimulation. Our data suggested that 9-HSA interaction with the catalytic site of the HDAC1 disrupts the HDAC1/cyclin D1 complex and favors EGF/EGFR recruitment by HDAC1, thus enhancing 9-HSA antiproliferative effects. In conclusion 9-HSA is a promising HDAC inhibitor with high selectivity and specificity, capable of inducing cell cycle arrest and histone hyperacetylation, but also able to modulate HDAC1 protein interaction. All these aspects may contribute to the potency of this new antitumor agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myc is a transcription factor that can activate transcription of several hundreds genes by direct binding to their promoters at specific DNA sequences (E-box). However, recent studies have also shown that it can exert its biological role by repressing transcription. Such studies collectively support a model in which c-Myc-mediated repression occurs through interactions with transcription factors bound to promoter DNA regions but not through direct recognition of typical E-box sequences. Here, we investigated whether N-Myc can also repress gene transcription, and how this is mechanistically achieved. We used human neuroblastoma cells as a model system in that N-MYC amplification/over-expression represents a key prognostic marker of this tumour. By means of transcription profile analyses we could identify at least 5 genes (TRKA, p75NTR, ABCC3, TG2, p21) that are specifically repressed by N-Myc. Through a dual-step-ChIP assay and genetic dissection of gene promoters, we found that N-Myc is physically associated with gene promoters in vivo, in proximity of the transcription start site. N-Myc association with promoters requires interaction with other proteins, such as Sp1 and Miz1 transcription factors. Furthermore, we found that N-Myc may repress gene expression by interfering directly with Sp1 and/or with Miz1 activity (i.e. TRKA, p75NTR, ABCC3, p21) or by recruiting Histone Deacetylase 1 (Hdac1) (i.e. TG2). In vitro analyses show that distinct N-Myc domains can interact with Sp1, Miz1 and Hdac1, supporting the idea that Myc may participate in distinct repression complexes by interacting specifically with diverse proteins. Finally, results show that N-Myc, through repressed genes, affects important cellular functions, such as apoptosis, growth, differentiation and motility. Overall, our results support a model in which N-Myc, like c-Myc, can repress gene transcription by direct interaction with Sp1 and/or Miz1, and provide further lines of evidence on the importance of transcriptional repression by Myc factors in tumour biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(9R)-9-hydroxystearic acid (9R-HSA) has been proven to have antitumoral activity because it is shown to inhibit histone deacetylase 1, an enzyme which activates DNA replication, and the (R)-enantiomer has been shown to be more active than the (S)-enantiomer both in vitro and by molecular docking. Hydroxyapatite is the main mineral component of bone and teeth and has been used for over 20 years in prostheses and their coating because it is biocompatible and bioactive. The goal of incorporating 9R-HSA into hydroxyapatite is to have a material that combines the bioactivity of HA with the antitumoral properties of 9R-HSA. In this work, 9R-HSA and its potassium salt were synthesized and the latter was also incorporated into hydroxyapatite. The content of (R)-9-hydroxystearate ion incorporated into the apatitic structure was shown to be a function of its concentration in solution and can reach values higher than 8.5%. (9R)-9-hydroxystearic acid modified hydroxyapatite was extensively characterized to determine the effect of the incorporation of the organic molecule. This incorporation does not significantly alter the unit cell but reduces the size of both the crystals as well as the coherent domains, mainly along the a-axis of hydroxyapatite. This is believed to be due to the coordination of the negatively charged carboxylate group to the calcium ions which are more exposed on the (100) face of the crystal, therefore limiting the growth mainly in this direction. Further analyses showed that the material becomes hydrophobic and more negatively charged with the addition of 9R-HSA but both of these properties reach a plateau at less than 5% wt of 9R-HSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

9-hydroxystearic acid (9-HSA) belongs to a class of lipid peroxidation products identified in several human and murine cell lines. These products are greatly diminished in tumors compared to normal tissues and their amount is inversely correlated with the malignancy of the tumor. 9-HSA activity has been tested in cancer cell lines, where it showed to act as a histone deacetylase 1 (HDAC1) inhibitor. In particular, in a colon cancer cell line (HT29), its administration resulted in an inhibition of proliferation together with an induction of differentiation. In this thesis the effect of (R)-9-hydroxystearic acid has been tested in vivo on cell proliferation and differentiation processes, in the early stages of zebrafish development. The final aim of this work was to elucidate the role of (R)-9-HSA in the control of cell differentiation and proliferation during normal development, in order to better understand its molecular control of cancerogenesis. The molecule has been administered via injection in the yolk of zebrafish embryos. The analysis of the histone acetylation pattern showed a hyperacetilation of histone H4 after treatment with the molecule, as detectable in HDAC1 mutants. (R)-9-HSA was also demonstrated to interfere with the signaling pathways that regulate proliferation and differentiation in zebrafish retina and hindbrain. This resulted in a reduction of proliferation in the hindbrain at 24 hours post injection (hpi), and in a hyperproliferation at 48 and 72 hpi in the retina, with a concomitant inhibition of differentiation. Finally, (R)-9-HSA effects were evident on proliferation of stem cell located in the ciliary marginal zone (CMZ) of the retina. The presence of ROS and 4-hydroxynoneal in the CMZ of wild-type embryos supports the hypothesis that oxidative stress could regulate stem cells fate in zebrafish retina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A diet high in fiber is associated with a decreased incidence and growth of colon cancers. Butyrate, a four-carbon short-chain fatty acid product of fiber fermentation within the colon, appears to mediate these salutary effects. We sought to determine the molecular mechanism by which butyrate mediates growth inhibition of colonic cancer cells and thereby to elucidate the molecular link between a high-fiber diet and the arrest of colon carcinogenesis. We show that concomitant with growth arrest, butyrate induces p21 mRNA expression in an immediate-early fashion, through transactivation of a promoter cis-element(s) located within 1.4 kb of the transcriptional start site, independent of p53 binding. Studies using the specific histone hyperacetylating agent, trichostatin A, and histone deacetylase 1 indicate that growth arrest and p21 induction occur through a mechanism involving histone hyperacetylation. We show the critical importance of p21 in butyrate-mediated growth arrest by first confirming that stable overexpression of the p21 gene is able to cause growth arrest in the human colon carcinoma cell line, HT-29. Furthermore, using p21-deleted HCT116 human colon carcinoma cells, we provide convincing evidence that p21 is required for growth arrest to occur in response to histone hyperacetylation, but not for serum starvation nor postconfluent growth. Thus, p21 appears to be a critical effector of butyrate-induced growth arrest in colonic cancer cells, and may be an important molecular link between a high-fiber diet and the prevention of colon carcinogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The t(8;21) translocation between two genes known as AML1 and ETO is seen in approximately 12–15% of all acute myeloid leukemia (AML) and is the second-most-frequently observed nonrandom genetic alteration associated with AML. AML1 up-regulates a number of target genes critical to normal hematopoiesis, whereas the AML1/ETO fusion interferes with this trans-activation. We discovered that the fusion partner ETO binds to the human homolog of the murine nuclear receptor corepressor (N-CoR). The interaction is mediated by two unusual zinc finger motifs present at the carboxyl terminus of ETO. Human N-CoR (HuN-CoR), which we cloned and sequenced in its entirety, encodes a 2,440-amino acid polypeptide and has a central domain that binds ETO. N-CoR, mammalian Sin3 (mSin3A and B), and histone deacetylase 1 (HDAC1) form a complex that alters chromatin structure and mediates transcriptional repression by nuclear receptors and by a number of oncoregulatory proteins. We found that ETO, through its interaction with the N-CoR/mSin3/HDAC1 complex, is also a potent repressor of transcription. This observation provides a mechanism for how the AML1/ETO fusion may inhibit expression of AML1-responsive target genes and disturb normal hematopoiesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tcf/Lef family transcription factors are the downstream effectors of the Wingless/Wnt signal transduction pathway. Upon Wingless/Wnt signalling, β-catenin translocates to the nucleus, interacts with Tcf (1–3) and thus activates transcription of target genes (4,5). Tcf factors also interact with members of the Groucho (Grg/TLE) family of transcriptional co-repressors (6). We have now tested all known mammalian Groucho family members for their ability to interact specifically with individual Tcf/Lef family members. Transcriptional activation by any Tcf could be repressed by Grg-1, Grg-2/TLE-2, Grg-3 and Grg-4 in a reporter assay. Specific interactions between Tcf and Grg proteins may be achieved in vivo by tissue- or cell type-limited expression. To address this, we determined the expression of all Tcf and Grg/TLE family members in a panel of cell lines. Within any cell line, several Tcfs and TLEs are co-expressed. Thus, redundancy in Tcf/Grg interactions appears to be the rule. The ‘long’ Groucho family members containing five domains are repressors of Tcf-mediated transactivation, whereas Grg-5, which only contains the first two domains, acts as a de-repressor. As previously shown for Drosophila Groucho, we show that long Grg proteins interact with histone deacetylase-1. Although Grg-5 contains the GP homology domain that mediates HDAC binding in long Grg proteins, Grg-5 fails to bind this co-repressor, explaining how it can de-repress transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

E2F transcriptional regulators control human-cell proliferation by repressing and activating the transcription of genes required for cell-cycle progression, particularly the S phase. E2F proteins repress transcription in association with retinoblastoma pocket proteins, but less is known about how they activate transcription. Here, we show that the human G1 phase regulator HCF-1 associates with both activator (E2F1 and E2F3a) and repressor (E2F4) E2F proteins, properties that are conserved in insect cells. Human HCF-1-E2F interactions are versatile: their associations and binding to E2F-responsive promoters are cell-cycle selective, and HCF-1 displays coactivator properties when bound to the E2F1 activator and corepressor properties when bound to the E2F4 repressor. During the G1-to-S phase transition, HCF-1 recruits the mixed-lineage leukemia (MLL) and Set-1 histone H3 lysine 4 methyltransferases to E2F-responsive promoters and induces histone methylation and transcriptional activation. These results suggest that HCF-1 induces cell-cycle-specific transcriptional activation by E2F proteins to promote cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The human herpes simplex virus (HSV) host cell factor HCF-1 is a transcriptional coregulator that associates with both histone methyl- and acetyltransferases, and a histone deacetylase and regulates cell proliferation and division. In HSV-infected cells, HCF-1 associates with the viral protein VP16 to promote formation of a multiprotein-DNA transcriptional activator complex. The ability of HCF proteins to stabilize this VP16-induced complex has been conserved in diverse animal species including Drosophila melanogaster and Caenorhabditis elegans suggesting that VP16 targets a conserved cellular function of HCF-1. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the role of HCF proteins in animal development, we have characterized the effects of loss of the HCF-1 homolog in C. elegans, called Ce HCF-1. Two large hcf-1 deletion mutants (pk924 and ok559) are viable but display reduced fertility. Loss of Ce HCF-1 protein at reduced temperatures (e.g., 12 degrees C), however, leads to a high incidence of embryonic lethality and early embryonic mitotic and cytokinetic defects reminiscent of mammalian cell-division defects upon loss of HCF-1 function. Even when viable, however, at normal temperature, mutant embryos display reduced levels of phospho-histone H3 serine 10 (H3S10P), a modification implicated in both transcriptional and mitotic regulation. Mammalian cells with defective HCF-1 also display defects in mitotic H3S10P status. CONCLUSIONS/SIGNIFICANCE: These results suggest that HCF-1 proteins possess conserved roles in the regulation of cell division and mitotic histone phosphorylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The human herpes simplex virus-associated host cell factor 1 (HCF-1) is a conserved human transcriptional co-regulator that links positive and negative histone modifying activities with sequence-specific DNA-binding transcription factors. It is synthesized as a 2035 amino acid precursor that is cleaved to generate an amino- (HCF-1(N)) terminal subunit, which promotes G1-to-S phase progression, and a carboxy- (HCF-1(C)) terminal subunit, which controls multiple aspects of cell division during M phase. The HCF-1(N) subunit contains a Kelch domain that tethers HCF-1 to sequence-specific DNA-binding transcription factors, and a poorly characterized so called "Basic" region (owing to a high ratio of basic vs. acidic amino acids) that is required for cell proliferation and has been shown to associate with the Sin3 histone deacetylase (HDAC) component. Here we studied the role of the Basic region in cell proliferation and G1-to-S phase transition assays. METHODOLOGY/PRINCIPAL FINDINGS: Surprisingly, much like the transcriptional activation domains of sequence-specific DNA-binding transcription factors, there is no unique sequence within the Basic region required for promoting cell proliferation or G1-to-S phase transition. Indeed, the ability to promote these activities is size dependent such that the shorter the Basic region segment the less activity observed. We find, however, that the Basic region requirements for promoting cell proliferation in a temperature-sensitive tsBN67 cell assay are more stringent than for G1-to-S phase progression in an HCF-1 siRNA-depletion HeLa-cell assay. Thus, either half of the Basic region alone can support G1-to-S phase progression but not cell proliferation effectively in these assays. Nevertheless, the Basic region displays considerable structural plasticity because each half is able to promote cell proliferation when duplicated in tandem. Consistent with a potential role in promoting cell-cycle progression, the Sin3a HDAC component can associate independently with either half of the Basic region fused to the HCF-1 Kelch domain. CONCLUSIONS/SIGNIFICANCE: While conserved, the HCF-1 Basic region displays striking structural flexibility for controlling cell proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substantial evidence supports a role for myocyte enhancer factor 2 (MEF2)-mediated transcription in neuronal survival, differentiation and synaptic function. In developing neurons, it has been shown that MEF2-dependent transcription is regulated by neurotrophins. Despite these observations, little is known about the cellular mechanisms by which neurotrophins activate MEF2 transcriptional activity. In this study, we examined the role of salt-inducible kinase 1 (SIK1), a member of the AMP-activated protein kinase (AMPK) family, in the regulation of MEF2-mediated transcription by the neurotrophin brain-derived neurotrophic factor (BDNF). We show that BDNF increases the expression of SIK1 in primary cultures of rat cortical neurons through the extracellular signal-regulated kinase 1/2 (ERK1/2)-signaling pathway. In addition to inducing SIK1 expression, BDNF triggers the phosphorylation of SIK1 at Thr182 and its translocation from the cytoplasm to the nucleus of cortical neurons. The effects of BDNF on the expression, phosphorylation and, translocation of SIK1 are followed by the phosphorylation and nuclear export of histone deacetylase 5 (HDAC5). Blockade of SIK activity with a low concentration of staurosporine abolished BDNF-induced phosphorylation and nuclear export of HDAC5 in cortical neurons. Importantly, stimulation of HDAC5 phosphorylation and nuclear export by BDNF is accompanied by the activation of MEF2-mediated transcription, an effect that is suppressed by staurosporine. Consistent with these data, BDNF induces the expression of the MEF2 target genes Arc and Nur77, in a staurosporine-sensitive manner. In further support of the role of SIK1 in the regulation of MEF2-dependent transcription by BDNF, we found that expression of wild-type SIK1 or S577A SIK1, a mutated form of SIK1 which is retained in the nucleus of transfected cells, is sufficient to enhance MEF2 transcriptional activity in cortical neurons. Together, these data identify a previously unrecognized mechanism by which SIK1 mediates the activation of MEF2-dependent transcription by BDNF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer cell metabolism differs from that of non-transformed cells in the same tissue. This specific metabolism gives tumor cells growing advantages besides the effect in increasing anabolism. One of these advantages is immune evasion mediated by a lower expression of the mayor histocompatibility complex class I molecules. The extracellular-signal-regulated kinase-5 regulates both mayor histocompatibility complex class I expression and metabolic activity. However, the mechanisms underlying are largely unknown. We show here that extracellular-signal-regulated kinase-5 regulates the transcription of the NADH(+)-dependent histone deacetylase silent mating type information regulation 2 homolog 1 (Sirtuin 1) in leukemic Jurkat T cells. This involves the activation of the transcription factor myocyte enhancer factor-2 and its binding to the sirt1 promoter. In addition, extracellular-signal-regulated kinase-5 is required for T cell receptor-induced and oxidative stress-induced full Sirtuin 1 expression. Extracellular-signal-regulated kinase-5 induces the expression of promoters containing the antioxidant response elements through a Sirtuin 1-dependent pathway. On the other hand, down modulation of extracellular-signal-regulated kinase-5 expression impairs the anti-oxidant response. Notably, the extracellular-signal-regulated kinase-5 inhibitor BIX02189 induces apoptosis in acute myeloid leukemia tumor cells without affecting T cells from healthy donors. Our results unveil a new pathway that modulates metabolism in tumor cells. This pathway represents a promising therapeutic target in cancers with deep metabolic layouts such as acute myeloid leukemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence indicates that a deficiency of 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) may influence asthma pathogenesis; however, its roles in regulating specific molecular transcription mechanisms remain unclear. We aimed to investigate the effect of 1,25(OH)2D3 on the expression and enzyme activity of histone deacetylase 2 (HDAC2) and its synergistic effects with dexamethasone (Dx) in the inhibition of inflammatory cytokine secretion in a rat asthma model. Healthy Wistar rats were randomly divided into 6 groups: control, asthma, 1,25(OH)2D3 pretreatment, 1,25(OH)2D3 treatment, Dx treatment, and Dx and 1,25(OH)2D3 treatment. Pulmonary inflammation was induced by ovalbumin (OVA) sensitization and challenge (OVA/OVA). Inflammatory cells and cytokines in the bronchoalveolar lavage (BAL) fluid and histological changes in lung tissue were examined. Nuclear factor kappa B (NF-κB) p65 and HDAC2 expression levels were assessed with Western blot analyses and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Enzyme activity measurements and immunohistochemical detection of HDAC2 were also performed. Our data demonstrated that 1,25(OH)2D3 reduced the airway inflammatory response and the level of inflammatory cytokines in BAL. Although NF-κB p65 expression was attenuated in the pretreatment and treatment groups, the expression and enzyme activity of HDAC2 were increased. In addition, 1,25(OH)2D3 and Dx had synergistic effects on the suppression of total cell infusion, cytokine release, and NF-κB p65 expression, and they also increased HDAC2 expression and activity in OVA/OVA rats. Collectively, our results indicated that 1,25(OH)2D3might be useful as a novel HDAC2 activator in the treatment of asthma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Au cours des maladies cardiovasculaires (MCV), il peut se produire divers problèmes de santé, telle que l’insuffisance cardiaque ou encore l’HTA. Ces phénomènes se caractérisent, entre autres, par une augmentation de synthèse d’endotheline-1 (ET-1), un neuropeptide synthétisé par les cellules endothéliales ayant un effet vasoconstricteur sur les cellules musculaires lisses vasculaires (CMLV). Ainsi, la surexpression de ce vasopeptide, mène à terme, au maintien de l’HTA aggravée des sujets, précédée ou concomitante à l’athérosclérose ou à la resténose, cliniquement illustrées par une prolifération et une migration anormale des CMLV de la media vers l’intima des vaisseaux sanguins. Parallèlement, il a été observé que la protéine sirtuine-1 (Sirt-1), membre de la famille des protéines histones déacétylases (HDAC), présente des propriétés anti-athérosclérotiques par sa capacité d’atténuer la prolifération et la migration des CMLV. Des travaux récents ont aussi montré qu’au cours de l’HTA la protéine Sirt-1 est faiblement exprimée dans les CMLV. Son implication dans le développement des pathologies vasculaires semble apparente, mais des études demeurent nécessaires pour décrire son rôle exact dans la pathogenèse des MCV. Dans cette optique, l’objectif de cette étude a été d’observer la variation d’expression de Sirt-1 dans les CMLV, isolées de l’aorte ascendante de rat, en réponse à l’ET-1. On a remarqué qu’une heure de stimulation des CMLV avec l’ET-1 induit une diminution de l’expression de Sirt-1 via l’activation des récepteurs ETA. Ces résultats suggèrent que la capacité d’ET-1 à atténuer l’expression de Sirt-1 serait un éventuel mécanisme d’action avec des effets favorisant les MCV.