982 resultados para highly charged ions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have determined resonant strengths of the KLn (2 less than or equal to n less than or equal to 5) resonances for helium-like Ti ions and (3 less than or equal to n less than or equal to 5) resonances for helium-like Fe ions. The results were obtained using the Tokyo electron beam ion trap. Characteristic X-rays from both dielectronic recombination and radiative recombination were detected as the electron beam energy was scanned through the resonances. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resonant strengths have been measured for dielectronic recombination of Li-like iodine, holmium, and bismuth using an electron beam ion trap. By observing the atomic number dependence of the state-resolved resonant strength, clear experimental evidence has been obtained that the importance of the generalized Breit interaction (GBI) effect on dielectronic recombination increases as the atomic number increases. In particular, it has been shown that the GBI effect is exceptionally strong for the recombination through the resonant state [1s2s(2)2p(1/2)](1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in the development of 2D microstrip detectors open up new possibilities for hard x-ray spectroscopy, in particular for polarization studies. These detectors make ideal Compton polarimeters, which enable us to study precisely the polarization of hard x-rays. Here, we present recent results from measurements of Radiative Electron Capture into the K-shell of highly-charged uranium ions. The experiments were performed with a novel 2D Si(Li) Compton polarimeter at the Experimental Storage Ring at GSI. Stored and cooled beams of U91+ and U92+ ions, with kinetic energies of 43 MeV/u and 96 MeV/u respectively, were crossed with a hydrogen gasjet. The preliminary data analysis shows x-rays from the K-REC process, emitted perpendicularly to the ion beam, to be strongly linearly polarized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pure Coulomb explosions of the methane clusters (CA(4))(n), (light atom A = H or D) have been investigated by a simplified electrostatic model for both a single cluster and an ensemble of clusters with a given cluster size distribution. The dependence of the energy of ions produced from the explosions on cluster size and the charge state of the carbon ions has been analysed. It is found that, unlike the average proton energy which increases with the charge q of the carbon ions, the average deuteron energy tends to saturate as q becomes larger than 4. This implies that when the laser intensity is sufficiently high for the (CD4)(n) to be ionized to a charge state of (C4+D4+)(n), the neutron yield from a table-top laser-driven Coulomb explosion of deuterated methane clusters (CD4)(n) could be increased significantly by increasing the interaction volume rather than by increasing the laser intensity to produce the higher charge state (C6+D4+)(n). The flight-time spectra of the carbon ions and the light ions have also been studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Al atomic characteristic spectral lines were induced by the impact of Ar-40(q+) ions (8 <= q <= 16; kinetic energy 150 keV) on Al surface. The result shows that by Penning impinging and resonant capture, the ion energy is deposited on the Al surface to excite the target atom, which is different from light excitation. Not only are the transitions betweem electronic configurations of the atomic complex excited, but the enhancing tendency of the characteristic spectral line intensity is consistent with the enhancing tendency of the coulomb potential energy of the incident ions with increasing charged states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T he total secondary electron emission yields, gamma(T), induced by impact of the fast ions Neq+ (q = 2-8) and Arq+ (q = 3-12) on Si and Neq+ (q = 2-8) on W targets have been measured. It was observed that for a given impact energy, gamma(T) increases with the charge of projectile ion. By plotting gamma(T) as a function of the total potential energy of the respective ion, true kinetic and potential electron yields have been obtained. Potential electron yield was proportional to the total potential energy of the projectile ion. However, decrease in potential electron yield with increasing kinetic energy of Neq+ impact on Si and W was observed. This decrease in potential electron yield with kinetic energy of the ion was more pronounced for the projectile ions having higher charge states. Moreover, kinetic electron yield to energy-loss ratio for various ion-target combinations was calculated and results were in good agreement with semi-empirical model for kinetic electron emission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By use of optical spectrum technology, the spectra of X-ray induced by highly charged Ar-40(q+) ions interacting with Au surface have been studied. The results show that the argon K alpha X-ray were emitted from the hollow atoms formed below the surface. There is a process of multi-electron exciting in neutralization of the Ar16+ ion, with electronic configuration 1s(2) in its ground state below the solid surface. The yield of the projectile K alpha X-ray is related to its initial electronic configuration, and the yield of the target X-ray is related to the projectile kinetic energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the X-ray spectra produced by the interaction of highly charged ions of Arq+ (q = 16, 17, 18) with metallic surface of Be, Al, Ni, Mo and Au respectively. The experimental results show that the K alpha X-ray emerges from under the surface of solid in the interaction of ions with targets. The multi-electron excitation occurred in the process neutralization of the Ar16+ in electronic configuration of 1s(2) in metallic surfaces, which produces vacancy in the K shell. Electron from high n state transition to K vacancy gives off X-ray. We find that there is no obvious relation between the shape of X-ray spectra and the different targets. The X-ray yield of incident ions are associated with initial electronic configuration. The X-ray yield of target is related to the kinetic energy of the incident ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In biological mass spectrometry (MS), two ionization techniques are predominantly employed for the analysis of larger biomolecules, such as polypeptides. These are nano-electrospray ionization [1, 2] (nanoESI) and matrix-assisted laser desorption/ionization [3, 4] (MALDI). Both techniques are considered to be “soft”, allowing the desorption and ionization of intact molecular analyte species and thus their successful mass-spectrometric analysis. One of the main differences between these two ionization techniques lies in their ability to produce multiply charged ions. MALDI typically generates singly charged peptide ions whereas nanoESI easily provides multiply charged ions, even for peptides as low as 1000 Da in mass. The production of highly charged ions is desirable as this allows the use of mass analyzers, such as ion traps (including orbitraps) and hybrid quadrupole instruments, which typically offer only a limited m/z range (< 2000–4000). It also enables more informative fragmentation spectra using techniques such as collisioninduced dissociation (CID) and electron capture/transfer dissociation (ECD/ETD) in combination with tandem MS (MS/MS). [5, 6] Thus, there is a clear advantage of using ESI in research areas where peptide sequencing, or in general, the structural elucidation of biomolecules by MS/MS is required. Nonetheless, MALDI with its higher tolerance to contaminants and additives, ease-of-operation, potential for highspeed and automated sample preparation and analysis as well as its MS imaging capabilities makes it an ionization technique that can cover bioanalytical areas for which ESI is less suitable. [7, 8] If these strengths could be combined with the analytical power of multiply charged ions, new instrumental configurations and large-scale proteomic analyses based on MALDI MS(/MS) would become feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collector-type experiments have been conducted to investigate two different aspects of sputtering induced by keV ions. The first study looked for possible ejection mechanisms related to the primary charge state of the projectile. Targets of CsI and LiNbO_3 were bombarded with 48 keV Ar^(q+), and a Au target was bombarded with 60 keV Ar^(q+), for q = 4, 8, and 11. The collectors were analyzed using heavy-ion Rutherford backscattering spectroscopy to determine the differential angular sputtering yields; these and the corresponding total yields were examined for variations as a function of projectile charge state. For the Au target, no significant changes were seen, but for the insulating targets slight (~10%) enhancements were observed in the total yields as the projectile charge state was increased from 4+ to 11+.

In the second investigation, artificial ^(92)Mo/^(100)Mo targets were bombarded with 5 and 10 keV beams of Ar^+ and Xe^+ to study the isotopic fractionation of sputtered neutrals as a function of emission angle and projectile fluence. Using secondary ion mass spectroscopy to measure the isotope ratio on the collectors, material ejected into normal directions at low bombarding fluences (~ 10^(15) ions cm^(-2)) was found to be enriched in the light isotope by as much as ~70‰ compared to steady state. Similar results were found for secondary Mo ions sputtered by 14.5 keV O^-. For low-fluence 5 keV Xe^+ bombardment, the light-isotope enrichment at oblique angles was ~20‰ less than the corresponding enrichment in the normal direction. No angular dependence could be resolved for 5 keV Ar^+ projectiles at the lowest fluence. The above fractionation decreased to steady-state values after bombarding fluences of a few times 10^(16) ions cm^(-2) , with the angular dependence becoming more pronounced. The fractionation and total sputtering yield were found to be strongly correlated, indicating that the above effects may have been related to the presence of a modified target surface layer. The observed effects are consistent with other secondary ion measurements and multiple-interaction computer simulations, and are considerably larger than predicted by existing analytic theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the hot electrons in highly charged electron cyclotron resonance (ECR) plasma, Bremsstrahlung radiations were measured on two ECR ion sources at the Institute of Modern Physics. Used as a comparative index of the mean energy of the hot electrons, a spectral temperature, Tspe, is derived through a linear fitting of the spectra in a semi-logarithmic representation. The influences of the external source parameters, especially the magnetic configuration, on the hot electrons are studied systematically. This study has experimentally demonstrated the importance of high microwave frequency and high magnetic field in the electron resonance heating to produce a high density of hot electrons, which is consistent with the empirical ECR scaling laws. The experimental results have again shown that a good compromise is needed between the ion extraction and the plasma confinement for an efficient production of highly charged ion beams. In addition, this investigation has shown that the correlation between the mean energy of the hot electrons and the magnetic field gradient at the ECR is well in agreement with the theoretical models.中文摘要:ECR(电子回旋共振)离子源是产生稳定的强流多电荷态离子束流最有效装置。全永磁 ECR 离子源因其独特的特点为很多中小型多电荷态离子束流实验平台与离子注入机等系统所采用,为后者产生重复性好、稳定性强的多电荷态离子束流。本文着重论述了中国科学院近代物理研究所研制的几台全永磁多电荷态ECR离子源及其特性与典型性能,如能产生强流高电荷态离子束流的高性能全永磁离子源LAPECR2,能产生强流中低电荷态离子束流的LAPECR1,能产生多电荷态重金属离子束流的LAPECR1-M等。这些性能稳定的离子源为提高近代物理研究所相关试验平台的性能提供了关键的束流品质保障。