873 resultados para high yield


Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: The use of salivary diagnostics is increasing because of its noninvasiveness, ease of sampling, and the relatively low risk of contracting infectious organisms. Saliva has been used as a biological fluid to identify and validate RNA targets in head and neck cancer patients. The goal of this study was to develop a robust, easy, and cost-effective method for isolating high yields of total RNA from saliva for downstream expression studies. METHODS: Oral whole saliva (200 mu L) was collected from healthy controls (n = 6) and from patients with head and neck cancer (n = 8). The method developed in-house used QIAzol lysis reagent (Qiagen) to extract RNA from saliva (both cell-free supernatants and cell pellets), followed by isopropyl alcohol precipitation, cDNA synthesis, and real-time PCR analyses for the genes encoding beta-actin ("housekeeping" gene) and histatin (a salivary gland-specific gene). RESULTS: The in-house QIAzol lysis reagent produced a high yield of total RNA (0.89 -7.1 mu g) from saliva (cell-free saliva and cell pellet) after DNase treatment. The ratio of the absorbance measured at 260 nm to that at 280 nm ranged from 1.6 to 1.9. The commercial kit produced a 10-fold lower RNA yield. Using our method with the QIAzol lysis reagent, we were also able to isolate RNA from archived saliva samples that had been stored without RNase inhibitors at -80 degrees C for >2 years. CONCLUSIONS: Our in-house QIAzol method is robust, is simple, provides RNA at high yields, and can be implemented to allow saliva transcriptomic studies to be translated into a clinical setting.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite an abundance of polyembryonic genotypes and the need for rootstocks that improve scion yield and productivity, simultaneous field testing of a wide range of mango (Mangifera indica L.) genotypes as rootstocks has not previously been reported. In this experiment, we examined the growth and yield of 'Kensington Pride' on 64 mango genotypes of diverse origin during the first four seasons of fruit production to identify those worth longer-term assessment. We also recorded morphological characteristics of seedlings of 46 of these genotypes in an attempt to relate these measures to subsequent field performance. Tree canopy development on the most vigorous rootstocks was almost double that on the least vigorous. Growth rates differed by more than 160%. Cumulative marketable yield ranged from 36 kg/tree for the lowest yielding rootstock to 181 kg/tree for the most productive. Yield efficiency also differed markedly among the 64 rootstocks with the best treatment being 3.5 times more efficient than the poorest treatment. No relationship was found between yield efficiency and tree size, suggesting it is possible to select highly efficient rootstocks of differing vigor. Two genotypes ('Brodie' and 'MYP') stood out as providing high yield efficiency with small tree size. A further two genotypes ('B' and 'Watertank') were identified as offering high yield efficiency and large tree size and should provide high early yields at traditional tree spacing. Efforts to relate the morphology of different genotype seedlings to subsequent performance as a rootstock showed that nursery performance of mango seedlings is no indication of their likely behavior as a rootstock. The economic cost of poor yields and low yield efficiencies during the early years of commercial orchard production provide a rationale for culling many of the rootstock treatments in this experiment and concentrating future assessment on the top ~20% of the 64 treatments. Of these, 'MYP', 'B', 'Watertank', 'Manzano', and 'Pancho' currently show the most promise.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha−1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha−1) was generally lower than TP (8.58 t ha−1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AbstractObjectives Decision support tools (DSTs) for invasive species management have had limited success in producing convincing results and meeting users' expectations. The problems could be linked to the functional form of model which represents the dynamic relationship between the invasive species and crop yield loss in the DSTs. The objectives of this study were: a) to compile and review the models tested on field experiments and applied to DSTs; and b) to do an empirical evaluation of some popular models and alternatives. Design and methods This study surveyed the literature and documented strengths and weaknesses of the functional forms of yield loss models. Some widely used models (linear, relative yield and hyperbolic models) and two potentially useful models (the double-scaled and density-scaled models) were evaluated for a wide range of weed densities, maximum potential yield loss and maximum yield loss per weed. Results Popular functional forms include hyperbolic, sigmoid, linear, quadratic and inverse models. Many basic models were modified to account for the effect of important factors (weather, tillage and growth stage of crop at weed emergence) influencing weed–crop interaction and to improve prediction accuracy. This limited their applicability for use in DSTs as they became less generalized in nature and often were applicable to a much narrower range of conditions than would be encountered in the use of DSTs. These factors' effects could be better accounted by using other techniques. Among the model empirically assessed, the linear model is a very simple model which appears to work well at sparse weed densities, but it produces unrealistic behaviour at high densities. The relative-yield model exhibits expected behaviour at high densities and high levels of maximum yield loss per weed but probably underestimates yield loss at low to intermediate densities. The hyperbolic model demonstrated reasonable behaviour at lower weed densities, but produced biologically unreasonable behaviour at low rates of loss per weed and high yield loss at the maximum weed density. The density-scaled model is not sensitive to the yield loss at maximum weed density in terms of the number of weeds that will produce a certain proportion of that maximum yield loss. The double-scaled model appeared to produce more robust estimates of the impact of weeds under a wide range of conditions. Conclusions Previously tested functional forms exhibit problems for use in DSTs for crop yield loss modelling. Of the models evaluated, the double-scaled model exhibits desirable qualitative behaviour under most circumstances.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Development of a high-speed and high-yield water-powered fish evisceration system (FES) to efficiently preprocess small fish and bycatch for producing minced fish meat is described. The concept of the system is propelling fish in a stream of water through an arrangement of cutting blades and brushes. Eviscerated fish are separated from the viscera and water stream in a dual screen rotary sieve. The FES processed head off fish, weighing 170–500 g, at the rate of 300 fish/min when used with an automatic heading machine. Yields of mince produced from walleye pollock, Theragra chalcogramma; and Pacific whiting, Merluccius productus; processed by the FES ranged between 43% and 58%. The maximum yield of minced muscle from fish weighing over 250 g was 52%, and the yield of 250 g was 58%. Test results indicated that surimi made from minced meat recovered from fish processed with the FES was comparable in quality to commercial grade surimi from conventional systems. Redesigned for commercial operation in the Faeroe Islands (Denmark), the system effectively processed North Atlantic blue whiting, Micromesistius poutassou, with an average weight of 110 g at a constant rate of 500–600 fish/min, producing deboned mince feeding a surimi processing line at a rate of 2.0 t/h. Yields of mince ranged from 55% to 63% from round fish. Surimi made from the blue whiting mince meat produced by the FES was comparable to surimi commercially produced from blue whiting by Norway and France and sold into European markets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The preparation of light alkenes by the gas phase oxidative cracking (GOC) or catalytic oxidative cracking (COC) of model high hydrocarbons ( hexane, cyclohexane, isooctane and decane in the GOC process and hexane in the COC process) was investigated in this paper. The selection for the feed in the GOC process was flexible. Excellent conversion of hydrocarbons ( over 85%) and high yield of light alkenes ( about 50%) were obtained in the GOC of various hydrocarbons including cyclohexane at 750 degreesC. In the GOC process, the utilization ratio of the carbon resources was high; CO dominated the produced COX (the selectivity to CO2 was always below 1%); and the total selectivity to light alkenes and CO was near or over 70%. In the COC of hexane over three typical catalysts (HZSM-5, 10% La2O3/HZSM-5 and 0.25% Li/MgO), the selectivity to COX was hard to decrease and the conversion of hexane and yield of light alkenes could not compete with those in the GOC process. With the addition of H-2 in the feed, the selectivity to COX was reduced below 5% over 0.1% Pt/HZSM-5 or 0.1% Pt/MgAl2O4 catalyst. The latter catalyst was superior to the former catalyst due to its perfect performance at high temperature, and with the latter, excellent selectivity to light alkenes ( 70%) and the conversion of hexane (92%) were achieved at 850 degreesC ( a yield of light alkenes of 64%, correspondingly).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new approach for the synthesis of polyaniline nanofibers under pseudo-high dilute conditions in aqueous system has been developed. High yield nanoscale polyaniline fibers with 18-110 nm in diameter are readily prepared by a high aniline concentration 0.4 M oxidation polymerization using ammonium persulfate (APS) as an oxidant in the presence of hydrochloric acid (HCl), perchloric acid (HClO4), (1S)-(+)-10-camphorsulfonic acid (CSA), acidic phosphate PAEG120 (PA120) and sulfuric acid (H2SO4) as the dopants. The novel pathway always produces polyaniline nanofibers of tunable diameters, high conductivity (from 10(0) to 10(1) S/cm) and crystallinity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we explore various arithmetic units for possible use in high-speed, high-yield ALUs operated at scaled supply voltage with adaptive clock stretching. We demonstrate that careful logic optimization of the existing arithmetic units (to create hybrid units) indeed make them further amenable to supply voltage scaling. Such hybrid units result from mixing right amount of fast arithmetic into the slower ones. Simulations on different hybrid adder and multipliers in BPTM 70 nm technology show 18%-50% improvements in power compared to standard adders with only 2%-8% increase in die-area at iso-yield. These optimized datapath units can be used to construct voltage scalable robust ALUs that can operate at high clock frequency with minimal performance degradation due to occasional clock stretching. © 2009 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A homologous series of macrocyclic oligoamides has been prepared in high yield by reaction of isophthaloyl chloride with m-phenylenediamine under pseudo-high-dilution conditions. The products were characterized by infrared and H-1 NMR spectroscopies, matrix assisted laser desorption-ionization time-of-flight mass spectrometry, and gel permeation chromatography (GPC). A series of linear oligomers was prepared for comparison. The macrocycles ranged in size from the cyclic trimer up to at least the cyclic nonamer (90 ring atoms). The same homologous series of macrocyclic oligomers was prepared in high yield by the cyclodepolymerization of poly(m-phenylene isophthalamide) (Nomex). Cyclodepolymerization was best achieved by treating a 1% w/v solution of the polymer in dimethyl sulfoxide containing calcium chloride or lithium chloride with 3-4 mol % of sodium hydride or the sodium salt of benzanilide at 150 degreesC for 70 h. Treatment of a concentrated solution of the macrocyclic oligomers (25% w/v) with 4 mol % of sodium hydride or the sodium salt of benzanilide in a solution of lithium chloride in dimethyl sulfoxide at 170 degreesC for 6 h resulted in efficient entropically driven ring-opening polymerizations to give poly(m-phenylene isophthalamide), characterized by infrared and H-1 NMR spectroscopies and by GPC. The molecular weights obtained were comparable with those of the commercial polymer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In an attempt to optimize a high yield, high efficiency artificial photosynthetic protein we have discovered unique energy and spatial architecture limits which apply to all light-activated photosynthetic systems. We have generated an analytical solution for the time behavior of the core three cofactor charge separation element in photosynthesis, the photosynthetic cofactor triad, and explored the functional consequences of its makeup including its architecture, the reduction potentials of its components, and the absorption energy of the light absorbing primary-donor cofactor. Our primary findings are two: First, that a high efficiency, high yield triad will have an absorption frequency more than twice the reorganization energy of the first electron transfer, and second, that the relative distance of the acceptor and the donor from the primary-donor plays an important role in determining the yields, with the highest efficiency, highest yield architecture having the light absorbing cofactor closest to the acceptor. Surprisingly, despite the increased complexity found in natural solar energy conversion proteins, we find that the construction of this central triad in natural systems matches these predictions. Our analysis thus not only suggests explanations for some aspects of the makeup of natural photosynthetic systems, it also provides specific design criteria necessary to create high efficiency, high yield artificial protein-based triads.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cultivares de cafeeiro (Coffea Arabica L.) adaptadas às regiões de cultivo, com população de plantas otimizada e adequado estado nutricional são premissas para a obtenção de produções elevadas de café. Estudou-se a produção trienal de café e o teor foliar de macronutrientes de cultivares de cafeeiro em função das densidades de plantio. Foram utilizados os cultivares Catuaí Amarelo (IAC 47), Obatã (IAC 1669-20), Acaiá (IAC 474-19) e Icatu Amarelo (IAC 2944) nas populações de 2.500 plantas ha-1 com duas plantas por cova; e, 5.000, 7.519 e 10.000 plantas ha-1 com uma planta por cova. As plantas foram adubadas de modo homogêneo, porém, sem calagem. À medida que a população de cafeeiros aumentou, a produtividade trienal de café aumentou, a produção de frutos por planta diminuiu e os teores foliares de fósforo (P), potássio (K) e enxofre (S) aumentaram. Nos cafeeiros sob adensamento encontrou-se igual ou maior teor de macronutrientes do que naqueles sob espaçamento convencional, sendo que os maiores teores foram observados nas cultivares de porte alto, e os menores, na cultivar Obatã, de porte baixo. Nos cafeeiros das covas com uma planta observou-se maior produção de café e menores concentrações de P, Ca e S do que naqueles das covas com duas plantas. No geral, os cultivares e as populações de cafeeiros estavam com teores de N e S acima dos limites de referência citados na literatura, mas com teores dos demais macronutrientes dentro da faixa adequada.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In crop year 2006/07, in Selviria, MS, Brazil, were analyzed the productivity of beans because of the chemical attributes of an Acrustox cultivated under conditions of high technological level of management by no-tillage irrigated with pivot central. The objective was to select, among the attributes studied soil, the one with the best representation to explain the variability of agricultural productivity. Geostatistical grid was installed to collect data from soil and plant, with 117 sampling points in an area of 2,025 m(2) and homogeneous slope of 0.055 m m(-1). From the standpoint of linear and spatial bean yield was respectively explained in terms of P and soil pH. So much for the values of phosphorus (P) in the intermediate layer and subsurface between 24-26 mg dm(-3), as well as for Hydrogen (pH) in the surface layer between 5.0 to 5.4, resulted in sites with the most high yield (2,160-2,665 kg ha(-1)).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is evidence that high-tillering, small-panicled pearl millet landraces are better adapted to the severe, unpredictable drought stress of the and zones of NW India than are low-tillering, large-panicled modern varieties, which significantly outyield the landraces under favourable conditions. In this paper, we analyse the relationship of and zone adaptation with the expression, under optimum conditions, of yield components that determine either the potential sink size or the ability to realise this potential. The objective is to test whether selection under optimal conditions for yield components can identify germplasm with adaptation to and zones in NW India, as this could potentially improve the efficiency of pearl millet improvement programs targeting and zones. We use data from an evaluation of over 100 landraces from NW India, conducted for two seasons under both severely drought-stressed and favourable conditions in northwest and south India. Trial average grain yields ranged from 14 g m(-2) to 182 g m(-2). The landraces were grouped into clusters, based on their phenology and yield components as measured under well-watered conditions in south India. In environments without pre-flowering drought stress, tillering type had no effect on potential sink size, but low-tillering, large-panicled landraces yielded significantly more grain, as they were better able to realise their potential sink size. By contrast, in two low-yielding and zone environments which experienced pre-anthesis drought stress, low-fillering, large-panicled landraces yielded significantly less grain than high-tillering ones with comparable phenology, because of both a reduced potential sink size and a reduced ability to realise this potential. The results indicate that the high grain yield of low-tillering, large-panicled landraces under favourable conditions is due to improved partitioning, rather than resource capture. However, under severe stress with restricted assimilate supply, high-tillering, small-panicled landraces are better able to produce a reproductive sink than are large-panicled ones. Selection under optimum conditions for yield components representing a resource allocation pattern favouring high yield under severe drought stress, combined with a capability to increase grain yield if assimilates are available, was more effective than direct selection for grain yield in identifying germplasm adapted to and zones. Incorporating such selection in early generations of variety testing could reduce the reliance on random stress environments. This should improve the efficiency of millet breeding programs targeting and zones. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel strategy linking physiology with plant breeding, molecular biology and computer simulation modelling is outlined here which aims to enhance selection of high yielding wheats with superior performance under conditions of water scarcity for the northern, subtropical, winter cereals region of Australia. In previous research, a source of high yield and performance under dry conditions for the target region was identified in a drought resistant parent. A large population of fixed lines for molecular genetic studies has been developed using the drought resistant line and widely grown current Australian variety. A preliminary study comparing the parent varieties was conducted in the winter of 2003. The two varieties were similar in many aspects of phenology, morphology and physiology. However, several important traits were identified that likely contribute to higher grain mass and yield of the drought resistant parent, including differences in the number and dry mass of tillers and spikes during development and the ability of drought resistant line to retain green leaves longer during grain filling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In Cambodia, grain yield in rainfed lowland rice is often affected by drought during late vegetative or reproductive stage. Several experiments were conducted to quantify the contribution of potential yield, drought tolerance and drought escape mechanisms to yield under water stress conditions. In total nine pairs of well irrigated and simulated drought (by draining water) experiments were conducted. Potential yield was obtained under irrigation. Grain yields and flowering dates were recorded in 15 varieties. Drought tolerance was quantified by using drought response index (DRI), which is grain yield under drought adjusted for potential yield and flowering date of the variety. Drought escape is expressed as days to flower under drought conditions. Mean yield reduction due to drought of nine experiments was 27 % (range 12-44). The relative contribution of yield potential, flowering date and DRI to observe yield under drought were evaluated by multiple regression for each experiment. Potential yield accounted for 54% (with a range of 10-80) of the variation in actual yield under drought. This was followed by DRI and flowering date with 34 (with a range of 0-60) and 12 (with a range of 0-30) of the contribution, respectively. It is concluded that selecting for drought tolerance as well as for high yield potential would be important in developing cultivars for rainfed lowlands in Cambodia. Although flowering dates are important for drought escape, it had a small contribution probably because drought developed slowly in these experiments in Cambodia.