955 resultados para high tolerance
Resumo:
Manufacturing tolerances, along with a high concentration ratio, are key issues in order to obtain cheap CPV systems for mass production. Consequently, this manuscript presents a novel tolerant and cost effective concentrator optic: the domed-shaped Fresnel-Köhler, presenting a curved Fresnel lens as Primary Optical Element (POE). This concentrator is based on two previous successful CPV designs: the FK concentrator, based on a flat Fresnel lens, and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The manuscript shows outstanding simulation results for geometrical concentration factor of Cg? = ?1,230x: high tolerance and high optical efficiency, achieving acceptance angles of 1.18° (dealing to a CAP?=0.72) and efficiencies over 85% (without any anti-reflective coating). Moreover, Köhler integration provides good irradiance uniformity on the cell surface without increasing system complexity by means of any extra element. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.
Resumo:
In order to have a cost-effective CPV system, two key issues must be ensured: high concentration factor and high tolerance. The novel concentrator we are presenting, the dome-shaped Fresnel-Köhler, can widely fulfill these two and other essential issues in a CPV module. This concentrator is based on two previous successful CPV designs: the FK concentrator with a flat Fresnel lens and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The concentrator has shown outstanding simulation results, achieving an effective concentration-acceptance product (CAP) value of 0.72, and an optical efficiency of 85% on-axis (no anti-reflective coating has been used). Moreover, Köhler integration provides good irradiance uniformity on the cell surface and low spectral aberration of this irradiance. This ensures an optimal performance of the solar cell, maximizing its efficiency. Besides, the dome-shaped FK shows optimal results for very compact designs, especially in the f/0.7-1.0 range. The dome-shaped Fresnel-Köhler concentrator, natural and enhanced evolution of the flat FK concentrator, is a cost-effective CPV optical design, mainly due to its high tolerances. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.
Resumo:
Winter dormancy is the strategy used by perennial plants to survive the harsh conditions of winter in temperate and cold regions. This complex mechanism is characterized by cessation of the meristems activity, which is accompanied by the budset, the acquisition of a high tolerance to the cold temperatures and, in the case of deciduous trees, by the senescence and leaf abscission. In long-lived forest species, the length of the dormancy period limits the growing season, affecting wood production and quality. A Suppression Subtractive Hybridization (SSH) enriched in genes overexpressed during the process of winter dormancy in chesnut stems identified a DNA glycosylase gene. In order to study its role in the establishment and maintenance of the winter dormancy, a molecular characterization and seasonal expression were performed. Furthermore, we have obtained poplar transgenic plantlets overexpressing the chesnut gene.
Resumo:
Shock tubes have been used successfully by a number of investigators to study the biological effects of variations in environmental pressures (1,2,3). Recently an unusually versatile laboratory pressurization source became available with the capability of consistently reproducing a wide variety of pressure-time phenomena of durations equal to and well beyond those associated with the detonation of nuclear devices (4). Thus it became possible to supplement costly full-scale field research in blast biology carried out at the Nevada Test Site (5,6) by using an economical yet realistic laboratory tool. In one exploratory study employing pressure pulses of 5 to 10 sec duration wherein the times to max overpressure and the magnitudes of the overpressures were varied, a relatively high tolerance of biological media to pressures well over 150 psi was demonstrated (7). In contrast, the present paper will describe the relatively high biological susceptibility to long duration overpressures in which the pressure rises occurred in single and double fast-rising steps.
Resumo:
In Australia more than 300 vertebrates, including 43 insectivorous bat species, depend on hollows in habitat trees for shelter, with many species using a network of multiple trees as roosts, We used roost-switching data on white-striped freetail bats (Tadarida australis; Microchiroptera: Molossidae) to construct a network representation of day roosts in suburban Brisbane, Australia. Bats were caught from a communal roost tree with a roosting group of several hundred individuals and released with transmitters. Each roost used by the bats represented a node in the network, and the movements of bats between roosts formed the links between nodes. Despite differences in gender and reproductive stages, the bats exhibited the same behavior throughout three radiotelemetry periods and over 500 bat days of radio tracking: each roosted in separate roosts, switched roosts very infrequently, and associated with other bats only at the communal roost This network resembled a scale-free network in which the distribution of the number of links from each roost followed a power law. Despite being spread over a large geographic area (> 200 km(2)), each roost was connected to others by less than three links. One roost (the hub or communal roost) defined the architecture of the network because it had the most links. That the network showed scale-free properties has profound implications for the management of the habitat trees of this roosting group. Scale-free networks provide high tolerance against stochastic events such as random roost removals but are susceptible to the selective removal of hub nodes. Network analysis is a useful tool for understanding the structural organization of habitat tree usage and allows the informed judgment of the relative importance of individual trees and hence the derivation of appropriate management decisions, Conservation planners and managers should emphasize the differential importance of habitat trees and think of them as being analogous to vital service centers in human societies.
Resumo:
With their compact spectrum and high tolerance to residual chromatic dispersion, duobinary formats are attractive for the deployment of 40 Gb/s technology on 10 Gb/s WDM Long-Haul transmission infrastructures. Here, we compare the robustness of various duobinary formats when facing 40 Gb/s transmission impairments.
Resumo:
The allée is one of the oldest instruments and forms of landscape architecture, which has often been used from the Antiquity for the expression of visual and functional relationships, for the delimitation of space, or for the pictorial creation of movement. The several hundred years old allées of the late baroque age, which still live among us as the witnesses of bygone times, represent a special value throughout Europe. The longevity and the respectable size as such bestow a certain value upon the trees. However, the allées also stand for a garden art, landscape, culture historical and natural value, which in a summarized way are called cultural heritage. Furthermore, the gene pool of the proven longevous, high tolerance tree specimens is a natural and genetic heritage of scientific signification. The age of the trees and allées is finite. Even with a careful and professional care, the renewal is inevitable, which, beyond technical problems of landscape architecture might raise many scientific, nature conservation, yes, esthetical and ethical questions. This is why there is no universal methodology, but there are aspects and examination procedures of general validity with the help of which a renewal can be prepared. The renewal concept of the lime tree allée in Nagycenk aims at the protection and the transmission of the value-ensemble embodied in the allée. One part of the value-ensemble is the spiritual, cultural heritage, the extraordinary value of the landscape-scaled, landscape architectural creation planted and taken care of by the Széchenyis. On the other hand the two and a half centuries old trees represent an inestimable botanical and genetic wealth. Its transmission and preservation is a scientifically important program coming up to the Széchenyi heritage. After the registration of the originally planted old trees, the complete nursery material of the “Széchenyi limes” necessary for the replanting can be produced by vegetative propagation. The gradual replacement of the stand with its own propagation material, by the carefully raised nursery trees of the same age can be a model for the gene-authentic renewal method – a novelty even at an international level.
Resumo:
The first part of the study examined the effect of industry risk changes on perceived audit risk at the financial statement level and whether these changes depended on individual differences such as experience and tolerance for ambiguity. ^ Forty-eight auditors from two offices of one of the “Big 5” CPA firms participated in this study. The ANOVA results supported the effect of industry risk in the assessment of audit risk at the financial statement level. Higher industry risk was associated with higher perceived audit risk. Tolerance for ambiguity was also significant in explaining the changes in the assessment of audit risk. Auditors with a high tolerance for ambiguity perceived lower audit risk than auditors with a low tolerance for ambiguity. Although ANOVA results did not find experience to be significant, a t-test for experience showed it to be marginally significant and inversely related to audit risk. ^ The second part of this study examined whether differences in perceived audit risk at the financial statement level altered the extent, nature or timing of the planned auditing procedures. The results of the MANOVA suggested an overall audit risk effect at the financial statement level. Perceived audit risk was significant in explaining the variation in the number of hours planned for the total cycle and the number of hours p1anned for the tests of balances and details. Perceived audit risk was not significant in determining the analytical review procedures planned, but assessed inherent risk at the cycle level was significant. The higher the inherent risk the more analytical procedures were planned. Perceived audit risk was not significant in explaining the timing of the procedures, but individual differences were significant. The results showed that experienced auditors and those with a high tolerance for ambiguity were less likely to postpone the performance of the interim procedures or the time at which the majority of audit work would be done. ^
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
The recycling of metals from secondary sources can be advantageous. Among the metals of interest, we have cobalt, a metal used for various purposes. As regards the secondary sources of cobalt, the lithium-ion batteries can be considered, since they contain cobalt oxide in their composition (LiCoO2). This way, the objective of this work was to use the microorganism strains (Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans) to bioleach the LiCoO2 extracted from discarded lithium ion batteries with emphasis on the recovery of cobalt for synthesis of new materials of interest. The lineage growth occurred in T&K medium and the growth investigation was made by observing the media, by platelet growth and microscope analysis. Then, the inoculum was standardized on 5 x 106 cells mL-1 and used in bioleaching tests. The bioleaching was investigated: the microorganism nature: separate strains and A. ferrooxidans and A. thiooxidans consortium, bioleaching time (0 to 40 days), inoculum proportion (5 to 50% v/v), energy source (iron and sulfur) and residue concentration (1063 to 8500 mg L-1 of cobalt). The cobalt concentration in the media was found by atomic absorption spectrometry and the medium pH was monitored during the bioleaching. The results show that the amount of bioleached cobalt increases with time and the iron concentration. The bioleaching with A. thiooxidans was not influenced by the addition of sulfur. The use of the two lineages together did not improve the bioleaching rates. Among the lineages, the A. thiooxidans presented better results and was able to bioleach cobalt amounts above 50% in most of the experiments. A. thiooxidans presented lower bioleaching rates, with a maximum of 50% after 24 days of experiment. After reprocessing by bioleaching, the cobalt in solution was used for synthesis of new materials: such as LiCoO2 cathode and as adsorbent pesticide double lamellar hydroxide (HDL Co-Al-Cl) by the Pechini and co-precipitation methods. The reprocessed LiCoO2 presented a unique stoichiometric phase relative to the HT-LiCoO2 structure similar to the JCPDS 44-0145, presenting electrochemical activity when tested as a cathode material. The double lamellar hydroxide Co-Al-Cl was tested as pesticide adsorbent, being possible to adsorb around 100% of the pesticide. The bioleaching was efficient in the recovery of cobalt present in lithium-ion batteries and microorganisms presented high tolerance to the residue, being able to bioleach even at higher LiCoO2 concentrations. The cobalt bioleaching medium did not impair the synthesis phases and the obtained materials presented structure and activity similar to the sintered materials from the reagents containing cobalt.
Resumo:
Global warming and ocean acidification are among the most important stressors for aquatic ecosystems in the future. To investigate their direct and indirect effects on a near-natural plankton community, a multiple-stressor approach is needed. Hence, we set up mesocosms in a full-factorial design to study the effects of both warming and high CO2 on a Baltic Sea autumn plankton community, concentrating on the impacts on microzooplankton (MZP). MZP abundance, biomass, and species composition were analysed over the course of the experiment. We observed that warming led to a reduced time-lag between the phytoplankton bloom and an MZP biomass maximum. MZP showed a significantly higher growth rate and an earlier biomass peak in the warm treatments while the biomass maximum was not affected. Increased pCO2 did not result in any significant effects on MZP biomass, growth rate, or species composition irrespective of the temperature, nor did we observe any significant interactions between CO2 and temperature. We attribute this to the high tolerance of this estuarine plankton community to fluctuations in pCO2, often resulting in CO2 concentrations higher than the predicted end-of-century concentration for open oceans. In contrast, warming can be expected to directly affect MZP and strengthen its coupling with phytoplankton by enhancing its grazing pressure.
Resumo:
We investigated the effects of elevated pCO2 in seawater both on the acute mortality and the reproductive properties of the benthic copepod Tigriopus japonicus and gastropod Babylonia japonica with the purpose of accumulating basic data for assessing potential environmental impacts of sub-sea geological storage of anthropogenic CO2 in Japan. Acute tests showed that nauplii of T. japonicus have a high tolerance to elevated pCO2 environments. Full life cycle tests on T. japonicus indicated NOEC = 5800 µatm and LOEC = 37,000 µatm. Adult B. japonica showed remarkable resistance to elevated pCO2 in the acute tests. Embryonic development of B. japonica showed a NOEC = 1500 µatm and LOEC = 5400 µatm. T. japonicus showed high resistance to elevated pCO2 throughout the life cycle and B. japonica are rather sensitive during the veliger stage when they started to form their shells.