976 resultados para high magnetic field annealing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CoFe2O4 nanoparticles prepared by chemical coprecipitation method in a magnetic field exhibit novel magnetic properties. The average particle diameter was about 2 nm and larger depending on the post annealing temperature. Magnetization measurements indicate that smaller nanoparticles are superparamagnetic above their respective blocking temperatures. In the blocked state, these nanoparticles exhibit interesting behaviors in the magnetic hysteresis measurements. Constricted, or wasp waisted with extremely narrow waist, hysteresis curves have been observed in the magnetization versus field sweeps. For larger nanoparticles, the room temperature hysteresis is typical of a ferromagnet with an open loop, but the loop closes at lower temperature. The novel magnetic behavior is attributed to the directional order of Co ions and vacancies in CoFe2O4 established during the coprecipitation of the nanoparticles under an applied field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schrijver, C.J. and Brown, D.S., 2000, Oscillations in the magnetic field of the solar corona in response to flares near the photosphere, Astrophysical Journal, 537, L69-L72. Sponsorship: PPARC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chaplin, W. J.; Dumbill, A. M.; Elsworth, Y.; Isaak, G. R.; McLeod, C. P.; Miller, B. A.; New, R.; Pint?r, B., Studies of the solar mean magnetic field with the Birmingham Solar-Oscillations Network (BiSON), Monthly Notice of the Royal Astronomical Society, Volume 343, Issue 3, pp. 813-818. RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pryse, Sian; Middleton, H. R.; Kersley, L.; Bust, G. S., 'Evidence for the tongue of ionization under northward interplanetary magnetic field conditions', Journal of Geophysical Research (2005) 110(A7) pp.A07301 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electromagnetic levitation of liquid metal droplets can be used to measure the properties of highly reactive liquid materials. Two independent numerical models, the commercial COMSOL and the spectral-collocation based free surface code SPHINX, have been applied to solve the transient electromagnetic, fluid flow and thermodynamic equations, which describe the levitated liquid motion and heating processes. The SPHINX model incorporates free surface deformation to accurately model the oscillations that result from the interaction between the electromagnetic and gravity forces, temperature dependent surface tension, magnetically controlled turbulent momentum transport. The models are adapted to incorporate periodic laser heating at the top of the droplet, which is used to measure the thermal conductivity of the material. Novel effects in the levitated droplet of magnetically damped turbulence and nonlinear growth of velocities in high DC magnetic field are analysed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equilibrium distances, binding energies and dissociation energies for the ground and low-lying states of the hydrogen molecular ion in a strong magnetic field parallel to the internuclear axis are calculated and refined, by using the two- dimensional pseudospectral method. High-precision results are presented for the binding energies over a wider field regime than already given in the literature (Kravchenko and Liberman 1997 Phys. Rev. A 55 2701). The present work removes a long- standing discrepancy for the R-eq value in the 1sigma(u) state at a field strength of 1.0 x 10(6) T. The dissociation energies of the antibonding 1pi(g) state induced by magnetic fields are determined accurately. We have also observed that the antibonding 1pi(g) potential energy curve develops a minimum if the field is sufficiently strong. Some unreliable results in the literature are pointed out and discussed. A way to efficiently treat vibrational processes and coupling between the nuclear and the electronic motions in magnetic fields is also suggested within a three-dimensional pseudospectral scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial and temporal evolution of spontaneous megagauss magnetic fields, generated during the interaction of a picosecond pulse with solid targets at irradiances above 5 x 10(18) W/cm(2) have been measured using Faraday rotation with picosecond resolution. A high density plasma jet has been observed simultaneously with the magnetic fields by interferometry and optical emission. Two-dimensional magnetohydrodynamic simulations reproduced the main features of the experiment and showed that the jet formation is due to pinching by the magnetic fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use images of high spatial and temporal resolution, obtained using both ground- and space-based instrumentation, to investigate the role magnetic field inclination angles play in the propagation characteristics of running penumbral waves in the solar chromosphere. Analysis of a near-circular sunspot, close to the center of the solar disk, reveals a smooth rise in oscillatory period as a function of distance from the umbral barycenter. However, in one directional quadrant, corresponding to the north direction, a pronounced kink in the period-distance diagram is found. Utilizing a combination of the inversion of magnetic Stokes vectors and force-free field extrapolations, we attribute this behavior to the cut-off frequency imposed by the magnetic field geometry in this location. A rapid, localized inclination of the magnetic field lines in the north direction results in a faster increase in the dominant periodicity due to an accelerated reduction in the cut-off frequency. For the first time, we reveal how the spatial distribution of dominant wave periods, obtained with one of the highest resolution solar instruments currently available, directly reflects the magnetic geometry of the underlying sunspot, thus opening up a wealth of possibilities in future magnetohydrodynamic seismology studies. In addition, the intrinsic relationships we find between the underlying magnetic field geometries connecting the photosphere to the chromosphere, and the characteristics of running penumbral waves observed in the upper chromosphere, directly supports the interpretation that running penumbral wave phenomena are the chromospheric signature of upwardly propagating magneto-acoustic waves generated in the photosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a detailed study of the use of a non-parallel, inhomogeneous magnetic field spectrometer for the investigation of laser-accelerated ion beams. Employing a wedged yoke design, we demonstrate the feasibility of an in-situ self-calibration technique of the non-uniform magnetic field and show that high-precision measurements of ion energies are possible in a wide-angle configuration. We also discuss the implications of a stacked detector system for unambiguous identification of different ion species present in the ion beam and explore the feasibility of detection of high energy particles beyond 100 MeV/amu in radiation harsh environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The creation of large magnetic fields is a necessary component in many technologies, ranging from magnetic resonance imaging, electric motors and generators, and magnetic hard disk drives in information storage. This is typically done by inserting a ferromagnetic pole piece with a large magnetisation density MS in a solenoid. In addition to large MS, it is usually required or desired that the ferromagnet is magnetically soft and has a Curie temperature well above the operating temperature of the device. A variety of ferromagnetic materials are currently in use, ranging from FeCo alloys in, for example, hard disk drives, to rare earth metals operating at cryogenic temperatures in superconducting solenoids. These latter can exceed the limit on MS for transition metal alloys given by the Slater-Pauling curve. This article reviews different materials and concepts in use or proposed for technological applications that require a large MS, with an emphasis on nanoscale material systems, such as thin and ultra-thin films. Attention is also paid to other requirements or properties, such as the Curie temperature and magnetic softness. In a final summary, we evaluate the actual applicability of the discussed materials for use as pole tips in electromagnets, in particular, in nanoscale magnetic hard disk drive read-write heads; the technological advancement of the latter has been a very strong driving force in the development of the field of nanomagnetism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the general framework in which fits our investigation is that of modeling the dynamics of dust grains therein dusty plasma (complex plasma) in the presence of electromagnetic fields. The generalized discrete complex Ginzburg-Landau equation (DCGLE) is thus obtained to model discrete dynamical structure in dusty plasma with Epstein friction. In the collisionless limit, the equation reduces to the modified discrete nonlinear Schrödinger equation (MDNLSE). The modulational instability phenomenon is studied and we present the criterion of instability in both cases and it is shown that high values of damping extend the instability region. Equations thus obtained highlight the presence of soliton-like excitation in dusty plasma. We studied the generation of soliton in a dusty plasma taking in account the effects of interaction between dust grains and theirs neighbours. Numerical simulations are carried out to show the validity of analytical approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unified view on the interfacial instability in a model of aluminium reduction cells in the presence of a uniform, vertical, background magnetic field is presented. The classification of instability modes is based on the asymptotic theory for high values of parameter β, which characterises the ratio of the Lorentz force based on the disturbance current, and gravity. It is shown that the spectrum of the travelling waves consists of two parts independent of the horizontal cross-section of the cell: highly unstable wall modes and stable or weakly unstable centre, or Sele’s modes. The wall modes with the disturbance of the interface being localised at the sidewalls of the cell dominate the dynamics of instability. Sele’s modes are characterised by a distributed disturbance over the whole horizontal extent of the cell. As β increases these modes are stabilized by the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observational studies have reported solar magnetic modulation of terrestrial lightning on a range of time scales, from days to decades. The proposed mechanism is two-step: lightning rates vary with galactic cosmic ray (GCR) flux incident on Earth, either via changes in atmospheric conductivity and/or direct triggering of lightning. GCR flux is, in turn, primarily controlled by the heliospheric magnetic field (HMF) intensity. Consequently, global changes in lightning rates are expected. This study instead considers HMF polarity, which doesnʼt greatly affect total GCR flux. Opposing HMF polarities are, however, associated with a 40–60% difference in observed UK lightning and thunder rates. As HMF polarity skews the terrestrial magnetosphere from its nominal position, this perturbs local ionospheric potential at high latitudes and local exposure to energetic charged particles from the magnetosphere. We speculate as to the mechanism(s) by which this may, in turn, redistribute the global location and/or intensity of thunderstorm activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results from all phases of the orbits of the Ulysses spacecraft have shown that the magnitude of the radial component of the heliospheric field is approximately independent of heliographic latitude. This result allows the use of near- Earth observations to compute the total open flux of the Sun. For example, using satellite observations of the interplanetary magnetic field, the average open solar flux was shown to have risen by 29% between 1963 and 1987 and using the aa geomagnetic index it was found to have doubled during the 20th century. It is therefore important to assess fully the accuracy of the result and to check that it applies to all phases of the solar cycle. The first perihelion pass of the Ulysses spacecraft was close to sunspot minimum, and recent data from the second perihelion pass show that the result also holds at solar maximum. The high level of correlation between the open flux derived from the various methods strongly supports the Ulysses discovery that the radial field component is independent of latitude. We show here that the errors introduced into open solar flux estimates by assuming that the heliospheric field’s radial component is independent of latitude are similar for the two passes and are of order 25% for daily values, falling to 5% for averaging timescales of 27 days or greater. We compare here the results of four methods for estimating the open solar flux with results from the first and second perehelion passes by Ulysses. We find that the errors are lowest (1–5% for averages over the entire perehelion passes lasting near 320 days), for near-Earth methods, based on either interplanetary magnetic field observations or the aa geomagnetic activity index. The corresponding errors for the Solanki et al. (2000) model are of the order of 9–15% and for the PFSS method, based on solar magnetograms, are of the order of 13–47%. The model of Solanki et al. is based on the continuity equation of open flux, and uses the sunspot number to quantify the rate of open flux emergence. It predicts that the average open solar flux has been decreasing since 1987, as Correspondence to: M. Lockwood (m.lockwood@rl.ac.uk) is observed in the variation of all the estimates of the open flux. This decline combines with the solar cycle variation to produce an open flux during the second (sunspot maximum) perihelion pass of Ulysses which is only slightly larger than that during the first (sunspot minimum) perihelion pass.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solar wind is an extended ionized gas of very high electrical conductivity, and therefore drags some magnetic flux out of the Sun to fill the heliosphere with a weak interplanetary magnetic field(1,2). Magnetic reconnection-the merging of oppositely directed magnetic fields-between the interplanetary field and the Earth's magnetic field allows energy from the solar wind to enter the near-Earth environment. The Sun's properties, such as its luminosity, are related to its magnetic field, although the connections are still not well understood(3,4). Moreover, changes in the heliospheric magnetic field have been linked with changes in total cloud cover over the Earth, which may influence global climate(5), Here we show that measurements of the near-Earth interplanetary magnetic field reveal that the total magnetic flux leaving the Sun has risen by a factor of 1.4 since 1964: surrogate measurements of the interplanetary magnetic field indicate that the increase since 1901 has been by a factor of 2,3, This increase may be related to chaotic changes in the dynamo that generates the solar magnetic field. We do not yet know quantitatively how such changes will influence the global environment.