994 resultados para high Tc superconductor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

These simulation calculations for the oxygen-atom vacancy in the high temperature superconductor TlBa2Ca(n-1)Cu(n)O2n+2.5(n = 1) have been performed by means of the tight-binding approximation based on the EHMO method. The results indicate that the effect of the oxygen-atom vacancy on the charge distributions at the Tl-, Ba-, Cu- and O-atom sites is appreciably different and that there may exist two kinds of Cu cation with different net charges (approximately + 3.0 or approximately + 1.0) due to the oxygen-atom vacancy in the lattice. The electric field gradient at the site of the oxygen-atom vacancy has been calculated. The position of the oxygen-atom vacancy which favours the high temperature superconductivity of TlBa2Ca(n-1)Cu(n)O2n+2.5(n = 1) has been discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the magnetic field penetration depth for high-Tc cuprate superconductors is calculated using a recent Interlayer Pair Tunneling (ILPT) model proposed by Chakravarty, Sudb0, Anderson, and Strong [1] to explain high temperature superconductivity. This model involves a "hopping" of Cooper pairs between layers of the unit cell which acts to amplify the pairing mechanism within the planes themselves. Recent work has shown that this model can account reasonably well for the isotope effect and the dependence of Tc on nonmagnetic in-plane impurities [2] , as well as the Knight shift curves [3] and the presence of a magnetic peak in the neutron scattering intensity [4]. In the latter case, Yin et al. emphasize that the pair tunneling must be the dominant pairing mechanism in the high-Tc cuprates in order to capture the features found in experiments. The goal of this work is to determine whether or not the ILPT model can account for the experimental observations of the magnetic field penetration depth in YBa2Cu307_a7. Calculations are performed in the weak and strong coupling limits, and the efi"ects of both small and large strengths of interlayer pair tunneling are investigated. Furthermore, as a follow up to the penetration depth calculations, both the neutron scattering intensity and the Knight shift are calculated within the ILPT formalism. The aim is to determine if the ILPT model can yield results consistent with experiments performed for these properties. The results for all three thermodynamic properties considered are not consistent with the notion that the interlayer pair tunneling must be the dominate pairing mechanism in these high-Tc cuprate superconductors. Instead, it is found that reasonable agreement with experiments is obtained for small strengths of pair tunneling, and that large pair tunneling yields results which do not resemble those of the experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is presented for determining the composition of thin films containing the elements Bi, Sr, Br, Cu, and Ca. Quantitative x-ray fluorescence (XRF) consisting of radioactive sources (secondary foil excitor 241Am-Mo source and 55Pe source), a Si(Li) detector, and a multichannel analyzer were employed. The XRF system was calibrated by using sol gel thin films of known element composition and also by sputtered thin films analyzed by the conventional Rutherford Back Scattering (RBS). The XRF system has been used to assist and optimize the sputter target composition required to produce high-Tc BiSrCaCuO films with the desired metal composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The density of states and the low temperature specific heat of higb-Tc superconductors are calculated in a functional integral formalism using the slave boson technique. The manybody calculation in a saddle point approximation shows that the Iow energy sector is dominated by 3 single band. The calculated values of density of states are in good agreement with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of acoustic plasmons in the recently discovered high Tc superconductors is discussed. It is shown that the exchange of acoustic plasmons together with the usual phonon exchange between electrons can give rise to a Tc - 100 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis deals with the study of super conducting properties of layered cuprates within the frame work of a modified Lawrence-Doniach (LD) model. The thesis is organized in seven chapters. Chapter I is a survey of the phenomena and theories of conventional superconductivity which can serve as a springboard for launching the study of the new class of oxide superconductors and it also includes a chronological description of the efforts made to overcome the temperature barrier. Chapter II deals with the structure and properties of the copper oxide superconductors and also the experimental constraints on the theories of high te:::nperature superconductivity. A modified Lawrence-Doniach type of phenomenological model which forms the basis of the presnt study is also discussed. In chapter III~ the temperature dependence of the upper critical field both parallel and perpendicular to the layers is determined and the results are compared with d.c. magnetization measurements on different superconducting compoilllds. The temperature and angular dependence of the lower critical field both parallel and perpendicular to the layers is also discussed. Chapters IV, V and VI deal with thermal fluctuation effects on superconducting properties. Fluctuation specific heat is studied in chapter IV. Paraconductivity both parallel and perpendicular to the layers is discussed in chapter V. Fluctuation diamagnetism is dealt with in chapter VI. Dimensional cross over in the fluctuation regime of all these quantities is also discussed. Chapter VII gives a summary of the results and the conclusions arrived at.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metallic state of high-temperature copper-oxide superconductors, characterized by unusual and distinct temperature dependences in the transport properties(1-4), is markedly different from that of textbook metals. Despite intense theoretical efforts(5-11), our limited understanding is impaired by our inability to determine experimentally the temperature and momentum dependence of the transport scattering rate. Here, we use a powerful magnetotransport probe to show that the resistivity and the Hall coefficient in highly doped Tl2Ba2CuO6+delta originate from two distinct inelastic scattering channels. One channel is due to conventional electron electron scattering; the other is highly anisotropic, has the same symmetry as the superconducting gap and a magnitude that grows approximately linearly with temperature. The observed form and anisotropy place tight constraints on theories of the metallic state. Moreover, in heavily doped non-superconducting La2-xSrxCuO4, this anisotropic scattering term is absent(12), suggesting an intimate connection between the origin of this scattering and superconductivity itself.