852 resultados para hierarchical location
Resumo:
Distributed generation unlike centralized electrical generation aims to generate electrical energy on small scale as near as possible to load centers, interchanging electric power with the network. This work presents a probabilistic methodology conceived to assist the electric system planning engineers in the selection of the distributed generation location, taking into account the hourly load changes or the daily load cycle. The hourly load centers, for each of the different hourly load scenarios, are calculated deterministically. These location points, properly weighted according to their load magnitude, are used to calculate the best fit probability distribution. This distribution is used to determine the maximum likelihood perimeter of the area where each source distributed generation point should preferably be located by the planning engineers. This takes into account, for example, the availability and the cost of the land lots, which are factors of special relevance in urban areas, as well as several obstacles important for the final selection of the candidates of the distributed generation points. The proposed methodology has been applied to a real case, assuming three different bivariate probability distributions: the Gaussian distribution, a bivariate version of Freund’s exponential distribution and the Weibull probability distribution. The methodology algorithm has been programmed in MATLAB. Results are presented and discussed for the application of the methodology to a realistic case and demonstrate the ability of the proposed methodology for efficiently handling the determination of the best location of the distributed generation and their corresponding distribution networks.
Resumo:
The ability to locate an individual is an essential part of many applications, specially the mobile ones. Obtaining this location in an open environment is relatively simple through GPS (Global Positioning System), but indoors or even in dense environments this type of location system doesn't provide a good accuracy. There are already systems that try to suppress these limitations, but most of them need the existence of a structured environment to work. Since Inertial Navigation Systems (INS) try to suppress the need of a structured environment we propose an INS based on Micro Electrical Mechanical Systems (MEMS) that is capable of, in real time, compute the position of an individual everywhere.
Resumo:
Purpose/Introduction: To determine the clinical utility of pre-operative diffusion tensor (DT) tractography of the facial nerve in the vicinity of cerebellopontine angle (CPA) tumours. The location of the facial nerve was established pre-operatively by tractography and compared with in-vivo electrode stimulation during microsurgery of vestibular schwannomas and rare CPA masses (meningiomas and arachnoid cysts).
Resumo:
1st Mares Conference on Marine Ecosystems Health and Conservation. Olhão, Portugal 17-21 November 2014.
Resumo:
3rd SMTDA Conference Proceedings, 11-14 June 2014, Lisbon Portugal.
Resumo:
O desenvolvimento de sistemas de localização pedestre com recurso a técnicas de dead reckoning tem mostrado ser uma área em expansão no mundo académico e não só. Existem algumas soluções criadas, no entanto, nem todas as soluções serão facilmente implementadas no mercado, quer seja pelo hardware caro, ou pelo sistema em si, que é desenvolvido tendo em conta um cenário em particular. INPERLYS é um sistema que visa apresentar uma solução de localização pedestre, independentemente do cenário, utilizando recursos que poderão ser facilmente usados. Trata-se de um sistema que utiliza uma técnica de dead reckonig para dar a localização do utilizador. Em cenários outdoor, um receptor GPS fornece a posição do utilizador, fornecendo uma posição absoluta ao sistema. Quando não é possível utilizar o GPS, recorre-se a um sensor MEMS e a uma bússola para se obter posições relativas à última posição válida do GPS. Para interligar todos os sensores foi utilizado o protocolo de comunicações sem fios ZigBee™. A escolha recaiu neste protocolo devido a factores como os seus baixos consumos e o seu baixo custo. Assim o sistema torna-se de uso fácil e confortável para o utilizador, ao contrário de sistemas similares desenvolvidos, que utilizam cabos para interligarem os diferentes componentes do sistema. O sensor MEMS do tipo acelerómetro tem a função de ler a aceleração horizontal, ao nível do pé. Esta aceleração será usada por um algoritmo de reconhecimento do padrão das acelerações para se detectar os passos dados. Após a detecção do passo, a aceleração máxima registada nesse passo é fornecida ao coordenador, para se obter o deslocamento efectuado. Foram efectuados alguns testes para se perceber a eficiência do INPERLYS. Os testes decorreram num percurso plano, efectuados a uma velocidade normal e com passadas normais. Verificou-se que, neste momento, o desempenho do sistema poderá ser melhorado, quer seja a nível de gestão das comunicações, quer a nível do reconhecimento do padrão da aceleração horizontal, essencial para se detectar os passos. No entanto o sistema é capaz de fornecer a posição através do GPS, quando é possível a sua utilização, e é capaz de fornecer a orientação do movimento.
Resumo:
Although power-line communication (PLC) is not a new technology, its use to support communication with timing requirements is still the focus of ongoing research. Recently, a new infrastructure was presented, intended for communication using power lines from a central location to geographically dispersed nodes using inexpensive devices. This new infrastructure uses a two-level hierarchical power-line system, together with an IP-based network. Within this infrastructure, in order to provide end-toend communication through the two levels of the powerline system, it is necessary to fully understand the behaviour of the underlying network layers. The masterslave behaviour of the PLC MAC, together with the inherent dynamic topology of power-line networks are important issues that must be fully characterised. Therefore, in this paper we present a simulation model which is being used to study and characterise the behaviour of power-line communication.
Resumo:
Composition is a practice of key importance in software engineering. When real-time applications are composed it is necessary that their timing properties (such as meeting the deadlines) are guaranteed. The composition is performed by establishing an interface between the application and the physical platform. Such an interface does typically contain information about the amount of computing capacity needed by the application. In multiprocessor platforms, the interface should also present information about the degree of parallelism. Recently there have been quite a few interface proposals. However, they are either too complex to be handled or too pessimistic.In this paper we propose the Generalized Multiprocessor Periodic Resource model (GMPR) that is strictly superior to the MPR model without requiring a too detailed description. We describe a method to generate the interface from the application specification. All these methods have been implemented in Matlab routines that are publicly available.
Resumo:
Consider a single processor and a software system. The software system comprises components and interfaces where each component has an associated interface and each component comprises a set of constrained-deadline sporadic tasks. A scheduling algorithm (called global scheduler) determines at each instant which component is active. The active component uses another scheduling algorithm (called local scheduler) to determine which task is selected for execution on the processor. The interface of a component makes certain information about a component visible to other components; the interfaces of all components are used for schedulability analysis. We address the problem of generating an interface for a component based on the tasks inside the component. We desire to (i) incur only a small loss in schedulability analysis due to the interface and (ii) ensure that the amount of space (counted in bits) of the interface is small; this is because such an interface hides as much details of the component as possible. We present an algorithm for generating such an interface.
Resumo:
Indoor location systems cannot rely on technologies such as GPS (Global Positioning System) to determine the position of a mobile terminal, because its signals are blocked by obstacles such as walls, ceilings, roofs, etc. In such environments. The use of alternative techniques, such as the use of wireless networks, should be considered. The location estimation is made by measuring and analysing one of the parameters of the wireless signal, usually the received power. One of the techniques used to estimate the locations using wireless networks is fingerprinting. This technique comprises two phases: in the first phase data is collected from the scenario and stored in a database; the second phase consists in determining the location of the mobile node by comparing the data collected from the wireless transceiver with the data previously stored in the database. In this paper an approach for localisation using fingerprinting based on Fuzzy Logic and pattern searching is presented. The performance of the proposed approach is compared with the performance of classic methods, and it presents an improvement between 10.24% and 49.43%, depending on the mobile node and the Fuzzy Logic parameters.ł
Resumo:
Fingerprinting is an indoor location technique, based on wireless networks, where data stored during the offline phase is compared with data collected by the mobile device during the online phase. In most of the real-life scenarios, the mobile node used throughout the offline phase is different from the mobile nodes that will be used during the online phase. This means that there might be very significant differences between the Received Signal Strength values acquired by the mobile node and the ones stored in the Fingerprinting Map. As a consequence, this difference between RSS values might contribute to increase the location estimation error. One possible solution to minimize these differences is to adapt the RSS values, acquired during the online phase, before sending them to the Location Estimation Algorithm. Also the internal parameters of the Location Estimation Algorithms, for example the weights of the Weighted k-Nearest Neighbour, might need to be tuned for every type of terminal. This paper focuses both approaches, using Direct Search optimization methods to adapt the Received Signal Strength and to tune the Location Estimation Algorithm parameters. As a result it was possible to decrease the location estimation error originally obtained without any calibration procedure.
Resumo:
Real structures can be thought as an assembly of components, as for instances plates, shells and beams. This later type of component is very commonly found in structures like frames which can involve a significant degree of complexity or as a reinforcement element of plates or shells. To obtain the desired mechanical behavior of these components or to improve their operating conditions when rehabilitating structures, one of the eventual parameters to consider for that purpose, when possible, is the location of the supports. In the present work, a beam-type structure is considered, and for a set of cases concerning different number and types of supports, as well as different load cases, the authors optimize the location of the supports in order to obtain minimum values of the maximum transverse deflection. The optimization processes are carried out using genetic algorithms. The results obtained, clearly show a good performance of the approach proposed. © 2014 IEEE.
Resumo:
Hierarchical SAPO-11 was synthesized using a commercial Merck carbon as template. Oxidant acid treatments were performed on the carbon matrix in order to investigate its influence on the properties of SAPO-11. Structural, textural and acidic properties of the different materials were evaluated by XRD, SEM, N-2 adsorption, pyridine adsorption followed by IR spectroscopy and thermal analyses. The catalytic behavior of the materials (with 0.5 wt.% Pt, introduced by mechanic mixture with Pt/Al2O3), were studied in the hydroisomerization of n-decane. The hierarchical samples showed higher yields in monobranched isomers than typical microporous SAPO-11, as a direct consequence of the modification on both porosity and acidity, the later one being the most predominant. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Most machining tasks require high accuracy and are carried out by dedicated machine-tools. On the other hand, traditional robots are flexible and easy to program, but they are rather inaccurate for certain tasks. Parallel kinematic robots could combine the accuracy and flexibility that are usually needed in machining operations. Achieving this goal requires proper design of the parallel robot. In this chapter, a multi-objective particle swarm optimization algorithm is used to optimize the structure of a parallel robot according to specific criteria. Afterwards, for a chosen optimal structure, the best location of the workpiece with respect to the robot, in a machining robotic cell, is analyzed based on the power consumed by the manipulator during the machining process.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática.