57 resultados para heteroskedasticity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho tem por objetivo analisar o potencial de desenvolvimento do contrato futuro de soja no Brasil, por meio da atração de hedgers brasileiros e argentinos. Para tanto, faz-se necessário conhecer os padrões das conexões dos preços entre as regiões analisadas. Nesse sentido, o Capítulo 2 investigou a integração espacial do mercado físico de soja no Brasil (região de Sorriso, no Mato Grosso) e na Argentina (região de Rosário, na província de Santa Fé) e comparou ao grau de integração com os Estados Unidos. Foram empregados modelos autorregressivos com threshold (TAR e M-TAR) e modelos vetoriais de correção de erros, lineares e com threshold (VECM e TVECM), visando captar os efeitos dos custos de transação sobre a integração espacial entre essas regiões. Os resultados apontaram que o mercado de soja brasileiro, argentino e norte-americano são integrados, mesmo considerando-se os efeitos dos custos de transação sobre as decisões de arbitragem espacial. Consequentemente, os preços da soja no mercado internacional tendem a refletir o comportamento dos principais países produtores. Apesar disso, o tempo de transmissão de choques de preços mostrou-se, em geral, menor entre Brasil e Argentina, refletindo a proximidade geográfica. Apontou-se também o comportamento assimétrico da transmissão desses choques, uma vez que choques positivos sobre a relação de longo prazo tendem a ser mais persistentes que os negativos. Se o contrato futuro reflete o comportamento de preços de um único mercado físico integrado, deve-se então esperar que o risco de base seja menor para este mercado e, portanto, que a eficiência do hedge seja maior. No Capítulo 3, o objetivo se constituiu em verificar se há maior eficiência no hedge realizado com os contratos com vencimento em março na CME em relação à BM&FBOVESPA, considerando-se as relações de longo prazo entre os preços à vista e futuros, bem como a dinâmica na estrutura de covariâncias condicionais, por meio de modelos de correção de erros (VECM) e modelos de heterocedasticidade condicional generalizados com correlação condicional dinâmica (DCC-GARCH). Os resultados mostraram que, em geral, a introdução da dinâmica nos segundos momentos das distribuições dos erros tende a aumentar a eficiência da estratégia de hedge. Além disso, foi observado que os produtores de Sorriso tendem a obter melhores condições de hedge na CME, embora haja redução da variância ao se operar na BM&FBOVESPA. Por outro lado, a eficiência do hedge para os produtores de Rosário foi significativamente maior na BM&FBOVESPA do que na CME, o que indica o mercado potencial de hedgers argentinos para negociar o contrato futuro de soja local no Brasil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this paper is twofold: on the one hand, to analyse the impact that the announcement of the opening of a new hotel has on the performance of its chain by carrying out an event study, and on the other hand, to compare the results of two different approaches to this method: a parametric specification based on the autoregressive conditional heteroskedasticity models to estimate the market model, and a nonparametric approach, which implies employing Theil’s nonparametric regression technique, which in turn, leads to the so-called complete nonparametric approach to event studies. The results that the empirical application arrives at are noteworthy as, on average, the reaction to such news releases is highly positive, both approaches reaching the same level of significance. However, a word of caution must be said when one is not only interested in detecting whether the market reacts, but also in obtaining an exhaustive calculation of the abnormal returns to further examine its determining factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the hypotheses that the recently established Mexican stock index futures market effectively serves the price discovery function, and that the introduction of futures trading has provoked volatility in the underlying spot market. We test both hypotheses simultaneously with daily data from Mexico in the context of a modified EGARCH model that also incorporates possible cointegration between the futures and spot markets. The evidence supports both hypotheses, suggesting that the futures market in Mexico is a useful price discovery vehicle, although futures trading has also been a source of instability for the spot market. Several managerial implications are derived and discussed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subsequent to the influential paper of [Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B., 1992. An empirical comparison of alternative models of the short-term interest rate. Journal of Finance 47, 1209-1227], the generalised method of moments (GMM) has been a popular technique for estimation and inference relating to continuous-time models of the short-term interest rate. GMM has been widely employed to estimate model parameters and to assess the goodness-of-fit of competing short-rate specifications. The current paper conducts a series of simulation experiments to document the bias and precision of GMM estimates of short-rate parameters, as well as the size and power of [Hansen, L.P., 1982. Large sample properties of generalised method of moments estimators. Econometrica 50, 1029-1054], J-test of over-identifying restrictions. While the J-test appears to have appropriate size and good power in sample sizes commonly encountered in the short-rate literature, GMM estimates of the speed of mean reversion are shown to be severely biased. Consequently, it is dangerous to draw strong conclusions about the strength of mean reversion using GMM. In contrast, the parameter capturing the levels effect, which is important in differentiating between competing short-rate specifications, is estimated with little bias. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the exchange rate forecasting performance of neural network models are evaluated against the random walk, autoregressive moving average and generalised autoregressive conditional heteroskedasticity models. There are no guidelines available that can be used to choose the parameters of neural network models and therefore, the parameters are chosen according to what the researcher considers to be the best. Such an approach, however,implies that the risk of making bad decisions is extremely high, which could explain why in many studies, neural network models do not consistently perform better than their time series counterparts. In this paper, through extensive experimentation, the level of subjectivity in building neural network models is considerably reduced and therefore giving them a better chance of Forecasting exchange rates with linear and nonlinear models 415 performing well. The results show that in general, neural network models perform better than the traditionally used time series models in forecasting exchange rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hospitals can experience difficulty in detecting and responding to early signs of patient deterioration leading to late intensive care referrals, excess mortality and morbidity, and increased hospital costs. Our study aims to explore potential indicators of physiological deterioration by the analysis of vital-signs. The dataset used comprises heart rate (HR) measurements from MIMIC II waveform database, taken from six patients admitted to the Intensive Care Unit (ICU) and diagnosed with severe sepsis. Different indicators were considered: 1) generic early warning indicators used in ecosystems analysis (autocorrelation at-1-lag (ACF1), standard deviation (SD), skewness, kurtosis and heteroskedasticity) and 2) entropy analysis (kernel entropy and multi scale entropy). Our preliminary findings suggest that when a critical transition is approaching, the equilibrium state changes what is visible in the ACF1 and SD values, but also by the analysis of the entropy. Entropy allows to characterize the complexity of the time series during the hospital stay and can be used as an indicator of regime shifts in a patient’s condition. One of the main problems is its dependency of the scale used. Our results demonstrate that different entropy scales should be used depending of the level of entropy verified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decades the study of integer-valued time series has gained notoriety due to its broad applicability (modeling the number of car accidents in a given highway, or the number of people infected by a virus are two examples). One of the main interests of this area of study is to make forecasts, and for this reason it is very important to propose methods to make such forecasts, which consist of nonnegative integer values, due to the discrete nature of the data. In this work, we focus on the study and proposal of forecasts one, two and h steps ahead for integer-valued second-order autoregressive conditional heteroskedasticity processes [INARCH (2)], and in determining some theoretical properties of this model, such as the ordinary moments of its marginal distribution and the asymptotic distribution of its conditional least squares estimators. In addition, we study, via Monte Carlo simulation, the behavior of the estimators for the parameters of INARCH(2) processes obtained using three di erent methods (Yule- Walker, conditional least squares, and conditional maximum likelihood), in terms of mean squared error, mean absolute error and bias. We present some forecast proposals for INARCH(2) processes, which are compared again via Monte Carlo simulation. As an application of this proposed theory, we model a dataset related to the number of live male births of mothers living at Riachuelo city, in the state of Rio Grande do Norte, Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decades the study of integer-valued time series has gained notoriety due to its broad applicability (modeling the number of car accidents in a given highway, or the number of people infected by a virus are two examples). One of the main interests of this area of study is to make forecasts, and for this reason it is very important to propose methods to make such forecasts, which consist of nonnegative integer values, due to the discrete nature of the data. In this work, we focus on the study and proposal of forecasts one, two and h steps ahead for integer-valued second-order autoregressive conditional heteroskedasticity processes [INARCH (2)], and in determining some theoretical properties of this model, such as the ordinary moments of its marginal distribution and the asymptotic distribution of its conditional least squares estimators. In addition, we study, via Monte Carlo simulation, the behavior of the estimators for the parameters of INARCH(2) processes obtained using three di erent methods (Yule- Walker, conditional least squares, and conditional maximum likelihood), in terms of mean squared error, mean absolute error and bias. We present some forecast proposals for INARCH(2) processes, which are compared again via Monte Carlo simulation. As an application of this proposed theory, we model a dataset related to the number of live male births of mothers living at Riachuelo city, in the state of Rio Grande do Norte, Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse porte sur l’effet du risque de prix sur la décision des agriculteurs et les transformateurs québécois. Elle se divise en trois chapitres. Le premier chapitre revient sur la littérature. Le deuxième chapitre examine l’effet du risque de prix sur la production de trois produits, à savoir le maïs grain, la viande de porc et la viande d’agneau dans la province Québec. Le dernier chapitre est centré sur l’analyse de changement des préférences du transformateur québécois de porc pour ce qui est du choix de marché. Le premier chapitre vise à montrer l’importance de l’effet du risque du prix sur la quantité produite par les agriculteurs, tel que mis en évidence par la littérature. En effet, la littérature révèle l’importance du risque de prix à l’exportation sur le commerce international. Le deuxième chapitre est consacré à l’étude des facteurs du risque (les anticipations des prix et la volatilité des prix) dans la fonction de l’offre. Un modèle d’hétéroscédasticité conditionnelle autorégressive généralisée (GARCH) est utilisé afin de modéliser ces facteurs du risque. Les paramètres du modèle sont estimés par la méthode de l’Information Complète Maximum Vraisemblance (FIML). Les résultats empiriques montrent l’effet négatif de la volatilité du prix sur la production alors que la prévisibilité des prix a un effet positif sur la quantité produite. Comme attendu, nous constatons que l’application du programme d’assurance-stabilisation des revenus agricoles (ASRA) au Québec induit une plus importante sensibilité de l’offre par rapport au prix effectif (le prix incluant la compensation de l’ASRA) que par rapport au prix du marché. Par ailleurs, l’offre est moins sensible au prix des intrants qu’au prix de l’output. La diminution de l’aversion au risque de producteur est une autre conséquence de l’application de ce programme. En outre, l’estimation de la prime marginale relative au risque révèle que le producteur du maïs est le producteur le moins averse au risque (comparativement à celui de porc ou d’agneau). Le troisième chapitre consiste en l’analyse du changement de préférence du transformateur québécois du porc pour ce qui est du choix de marché. Nous supposons que le transformateur a la possibilité de fournir les produits sur deux marchés : étranger et local. Le modèle théorique explique l’offre relative comme étant une fonction à la fois d’anticipation relative et de volatilité relative des prix. Ainsi, ce modèle révèle que la sensibilité de l’offre relative par rapport à la volatilité relative de prix dépend de deux facteurs : d’une part, la part de l’exportation dans la production totale et d’autre part, l’élasticité de substitution entre les deux marchés. Un modèle à correction d’erreurs est utilisé lors d’estimation des paramètres du modèle. Les résultats montrent l’effet positif et significatif de l’anticipation relative du prix sur l’offre relative à court terme. Ces résultats montrent donc qu’une hausse de la volatilité du prix sur le marché étranger par rapport à celle sur le marché local entraine une baisse de l’offre relative sur le marché étranger à long terme. De plus, selon les résultats, les marchés étranger et local sont plus substituables à long terme qu’à court terme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Contabilidade e Gestão das Instituições Financeiras

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis studies the field of asset price bubbles. It is comprised of three independent chapters. Each of these chapters either directly or indirectly analyse the existence or implications of asset price bubbles. The type of bubbles assumed in each of these chapters is consistent with rational expectations. Thus, the kind of price bubbles investigated here are known as rational bubbles in the literature. The following describes the three chapters. Chapter 1: This chapter attempts to explain the recent US housing price bubble by developing a heterogeneous agent endowment economy asset pricing model with risky housing, endogenous collateral and defaults. Investment in housing is subject to an idiosyncratic risk and some mortgages are defaulted in equilibrium. We analytically derive the leverage or the endogenous loan to value ratio. This variable comes from a limited participation constraint in a one period mortgage contract with monitoring costs. Our results show that low values of housing investment risk produces a credit easing effect encouraging excess leverage and generates credit driven rational price bubbles in the housing good. Conversely, high values of housing investment risk produces a credit crunch characterized by tight borrowing constraints, low leverage and low house prices. Furthermore, the leverage ratio was found to be procyclical and the rate of defaults countercyclical consistent with empirical evidence. Chapter 2: It is widely believed that financial assets have considerable persistence and are susceptible to bubbles. However, identification of this persistence and potential bubbles is not straightforward. This chapter tests for price bubbles in the United States housing market accounting for long memory and structural breaks. The intuition is that the presence of long memory negates price bubbles while the presence of breaks could artificially induce bubble behaviour. Hence, we use procedures namely semi-parametric Whittle and parametric ARFIMA procedures that are consistent for a variety of residual biases to estimate the value of the long memory parameter, d, of the log rent-price ratio. We find that the semi-parametric estimation procedures robust to non-normality and heteroskedasticity errors found far more bubble regions than parametric ones. A structural break was identified in the mean and trend of all the series which when accounted for removed bubble behaviour in a number of regions. Importantly, the United States housing market showed evidence for rational bubbles at both the aggregate and regional levels. In the third and final chapter, we attempt to answer the following question: To what extend should individuals participate in the stock market and hold risky assets over their lifecycle? We answer this question by employing a lifecycle consumption-portfolio choice model with housing, labour income and time varying predictable returns where the agents are constrained in the level of their borrowing. We first analytically characterize and then numerically solve for the optimal asset allocation on the risky asset comparing the return predictability case with that of IID returns. We successfully resolve the puzzles and find equity holding and participation rates close to the data. We also find that return predictability substantially alter both the level of risky portfolio allocation and the rate of stock market participation. High factor (dividend-price ratio) realization and high persistence of factor process indicative of stock market bubbles raise the amount of wealth invested in risky assets and the level of stock market participation, respectively. Conversely, rare disasters were found to bring down these rates, the change being severe for investors in the later years of the life-cycle. Furthermore, investors following time varying returns (return predictability) hedged background risks significantly better than the IID ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mestrado em Contabilidade e Análise Financeira,