947 resultados para hemisphere
Resumo:
Under anthropogenic climate change it is possible that the increased radiative forcing and associated changes in mean climate may affect the “dynamical equilibrium” of the climate system; leading to a change in the relative dominance of different modes of natural variability, the characteristics of their patterns or their behavior in the time domain. Here we use multi-century integrations of version three of the Hadley Centre atmosphere model coupled to a mixed layer ocean to examine potential changes in atmosphere-surface ocean modes of variability. After first evaluating the simulated modes of Northern Hemisphere winter surface temperature and geopotential height against observations, we examine their behavior under an idealized equilibrium doubling of atmospheric CO2. We find no significant changes in the order of dominance, the spatial patterns or the associated time series of the modes. Having established that the dynamic equilibrium is preserved in the model on doubling of CO2, we go on to examine the temperature pattern of mean climate change in terms of the modes of variability; the motivation being that the pattern of change might be explicable in terms of changes in the amount of time the system resides in a particular mode. In addition, if the two are closely related, we might be able to assess the relative credibility of different spatial patterns of climate change from different models (or model versions) by assessing their representation of variability. Significant shifts do appear to occur in the mean position of residence when examining a truncated set of the leading order modes. However, on examining the complete spectrum of modes, it is found that the mean climate change pattern is close to orthogonal to all of the modes and the large shifts are a manifestation of this orthogonality. The results suggest that care should be exercised in using a truncated set of variability EOFs to evaluate climate change signals.
Resumo:
Climate model simulations of past and future climate invariably contain prescribed zonal mean stratospheric ozone. While the effects of zonal asymmetry in ozone have been examined in the Northern Hemisphere, much greater zonal asymmetry occurs in the Southern Hemisphere during the break up of the Antarctic ozone hole. We prescribe a realistic three-dimensional distribution of ozone in a high vertical resolution atmospheric model and compare results with a simulation containing zonal mean ozone. Prescribing the three dimensional ozone distribution results in a cooling of the stratosphere and upper troposphere comparable to that caused by ozone depletion itself. Our results suggest that changes in the zonal asymmetry of ozone have had important impacts on Southern Hemisphere climate, and will continue to do so in the future.
Resumo:
The stratospheric sudden warming in the Southern Hemisphere (SH) in September 2002 was unexpected for two reasons. First, planetary wave activity in the Southern Hemisphere is very weak, and midwinter warmings have never been observed, at least not since observations of the upper stratosphere became regularly available. Second, the warming occurred in a west phase of the quasi-biennial oscillation (QBO) in the lower stratosphere. This is unexpected because warmings are usually considered to be more likely in the east phase of the QBO, when a zero wind line is present in the winter subtropics and hence confines planetary wave propagation to higher latitudes closer to the polar vortex. At first, this evidence suggests that the sudden warming must therefore be simply a result of anomalously strong planetary wave forcing from the troposphere. However, recent model studies have suggested that the midwinter polar vortex may also be sensitive to the equatorial winds in the upper stratosphere, the region dominated by the semiannual oscillation. In this paper, the time series of equatorial zonal winds from two different data sources, the 40-yr ECMWF Re-Analysis (ERA) and the Met Office assimilated dataset, are reviewed. Both suggest that the equatorial winds in the upper stratosphere above 10 hPa were anomalously easterly in 2002. Idealized model experiments are described in which the modeled equatorial winds were relaxed toward these observations for various years to examine whether the anomalous easterlies in 2002 could influence the timing of a warming event. It is found that the 2002 equatorial winds speed up the evolution of a warming event in the model. Therefore, this study suggests that the anomalous easterlies in the 1–10-hPa region may have been a contributory factor in the development of the observed SH warming. However, it is concluded that it is unlikely that the anomalous equatorial winds alone can explain the 2002 warming event.
Resumo:
The polar vortex of the Southern Hemisphere (SH) split dramatically during September 2002. The large-scale dynamical effects were manifest throughout the stratosphere and upper troposphere, corresponding to two distinct cyclonic centers in the upper troposphere–stratosphere system. High-resolution (T511) ECMWF analyses, supplemented by analyses from the Met Office, are used to present a detailed dynamical analysis of the event. First, the anomalous evolution of the SH polar vortex is placed in the context of the evolution that is usually witnessed during spring. Then high-resolution fields of potential vorticity (PV) from ECMWF are used to reveal several dynamical features of the split. Vortex fragments are rapidly sheared out into sheets of high (modulus) PV, which subsequently roll up into distinct synoptic-scale vortices. It is proposed that the stratospheric circulation becomes hydrodynamically unstable through a significant depth of the troposphere–stratosphere system as the polar vortex elongates.
Resumo:
Recent research has established that a small but statistically significant link exists between the stratosphere and the troposphere in the northern hemisphere extratropics. In this paper it is shown that a similar link exists between the stratosphere and troposphere during the unprecedented September 2002 sudden warming in the southern hemisphere. Two ensemble forecasts of the stratospheric sudden warming are run which have different stratospheric initial conditions and identical tropospheric initial conditions. Stratospheric initial conditions have an impact on the tropospheric flow at the peak of the major warming (5 days into the run) and on longer time-scales (18 days into the run). The character of this influence is a localized, equatorward shift of the tropospheric storm track. The averaged impact of the change in the position of the storm-track maps strongly onto the Southern Annular Mode structure, but does not have an annular character.
Resumo:
Atmospheric general circulation model experiments have been performed to investigate how the significant zonal asymmetry in the Southern Hemisphere (SH) winter storm track is forced by sea surface temperature (SST) and orography. An experiment with zonally symmetric tropical SSTs expands the SH upper-tropospheric storm track poleward and eastward and destroys its spiral structure. Diagnosis suggests that these aspects of the observed storm track result from Rossby wave propagation from a wave source in the Indian Ocean region associated with the monsoon there. The lower-tropospheric storm track is not sensitive to this forcing. However, an experiment with zonally symmetric midlatitude SSTs exhibits a marked reduction in the magnitude of the maximum intensity of the lower-tropospheric storm track associated with reduced SST gradients in the western Indian Ocean. Experiments without the elevation of the South African Plateau or the Andes show reductions in the intensity of the major storm track downstream of them due to reduced cyclogenesis associated with the topography. These results suggest that the zonal asymmetry of the SH winter storm track is mainly established by stationary waves excited by zonal asymmetry in tropical SST in the upper troposphere and by local SST gradients in the lower troposphere, and that it is modified through cyclogenesis associated with the topography of South Africa and South America.
Resumo:
Data from the MIPAS instrument on Envisat, supplemented by meteorological analyses from ECMWF and the Met Office, are used to study the meteorological and trace-gas evolution of the stratosphere in the southern hemisphere during winter and spring 2003. A pole-centred approach is used to interpret the data in the physically meaningful context of the evolving stratospheric polar vortex. The following salient dynamical and transport features are documented and analysed: the merger of anticyclones in the stratosphere; the development of an intense, quasi-stationary anticyclone in spring; the associated top-down breakdown of the polar vortex; the systematic descent of air into the polar vortex; and the formation of a three-dimensional structure of a tracer filament on a planetary scale. The paper confirms and extends existing paradigms of the southern hemisphere vortex evolution. The quality of the MIPAS observations is seen to be generally good. though the water vapour retrievals are unrealistic above 10 hPa in the high-latitude winter.
Resumo:
Northern hemisphere snow water equivalent (SWE) distribution from remote sensing (SSM/I), the ERA40 reanalysis product and the HadCM3 general circulation model are compared. Large differences are seen in the February climatologies, particularly over Siberia. The SSM/I retrieval algorithm may be overestimating SWE in this region, while comparison with independent runoff estimates suggest that HadCM3 is underestimating SWE. Treatment of snow grain size and vegetation parameterizations are concerns with the remotely sensed data. For this reason, ERA40 is used as `truth' for the following experiments. Despite the climatology differences, HadCM3 is able to reproduce the distribution of ERA40 SWE anomalies when assimilating ERA40 anomaly fields of temperature, sea level pressure, atmospheric winds and ocean temperature and salinity. However when forecasts are released from these assimilated initial states, the SWE anomaly distribution diverges rapidly from that of ERA40. No predictability is seen from one season to another. Strong links between European SWE distribution and the North Atlantic Oscillation (NAO) are seen, but forecasts of this index by the assimilation scheme are poor. Longer term relationships between SWE and the NAO, and SWE and the El Ni\~no-Southern Oscillation (ENSO) are also investigated in a multi-century run of HadCM3. SWE is impacted by ENSO in the Himalayas and North America, while the NAO affects SWE in North America and Europe. While significant connections with the NAO index were only present in DJF (and to an extent SON), the link between ENSO and February SWE distribution was seen to exist from the previous JJA ENSO index onwards. This represents a long lead time for SWE prediction for hydrological applications such as flood and wildfire forecasting. Further work is required to develop reliable large scale observation-based SWE datasets with which to test these model-derived connections.