895 resultados para heavy metal deposition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report on the realisation of a free space deposition process (FSD). For the first time the use of a moving support structure to deposit tracks of metal starting from a substrate and extending into free space is characterised. The ability to write metal shapes in free space has wide ranging applications in additive manufacturing and rapid prototyping where the tracks can be layered to build overhanging features without the use of fixed support structures (such as is used in selective laser melting (SLM) and stereo lithography (SLA)). We demonstrate and perform a preliminary characterisation of the process in which a soldering iron was used to deposit lead free solder tracks. The factors affecting the stability of tracks and the effect of operating parameters, temperature, velocity, initial track starting diameter and starting volume were measured. A series of 10 tracks at each setting were compared with a control group of tracks; the track width, taper and variation between tracks were compared. Notable results in free space track deposition were that the initial track diameter and volume affected the repeatability and quality of tracks. The standard deviation of mean track width of tracks from the constrained initial diameter group were half that of the unconstrained group. The amount of material fed to the soldering iron before commencing deposition affected the taper of tracks. At an initial volume of 7 mm3 and an initial track diameter of 0.8 mm, none of the ten tracks deposited broke or showed taper > ∼1°. The maximum deposition velocity for free space track deposition using lead-free solder was limited to 1.5 mm s-1. © 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Goal, Scope and Background. Heavy metal is among one of the pollutants, which cause severe threats to humans and the environment in China. The aim of the present review is to make information on the source of heavy metal pollution, distribution of heavy metals in the environment, and measures of pollution control accessible internationally, which are mostly published in Chinese. Methods. Information from scientific journals, university journals and governmental releases are compiled focusing mainly on Cd, Cu, Pb and Zn. Partly Al, As, Cr, Fe, Hg, Mn and Ni are included also in part as well. Results and Discussion. In soil, the average contents of Cd, Cu, Pb and Zn are 0.097, 22.6, 26.0 and 74.2 mg/kg, respectively. In the water of. the Yangtze River Basin, the concentrations of Cd, Cu, Pb and Zn are 0.080, 7.91, 15.7 and 18.7 pg/L, respectively. In reference to human activities, the heavy metal pollution comes from three sources: industrial emission, wastewater and solid waste. The environment such as soil, water and air were polluted by heavy metals in some cases. The contents of Cd, Cu, Pb and Zn even reach 3.16, 99.3, 84.1 and 147 mg/kg, respectively, in the soils of a wastewater irrigation zone. These contaminants pollute drinking water and food, and threaten human health. Some diseases resulting from pollution of geological and environmental origin, were observed with long-term and non-reversible effects. Conclusions. In China, the geological background level of heavy metal is low, but with the activity of humans, soil, water, air, and plants are polluted by heavy metals in some cases and even affect human health through the food chain. Recommendations and Outlook. To remediate and improve environmental quality is a long strategy for the polluted area to keep humans and animals healthy. Phytoremediation would be an effective technique to remediate the heavy metal pollutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel heavy-metal chalcogenide glass doped with a high dysprosium ion (Dy(3+)) concentration was prepared by the well-established melt-quenching technique from high-purity elements. The results show that when Cadmium (Cd) is introduced into chalcogenide glass, the concentration of Dy(3+) ions doped in GeGaCdS glasses is markedly increased, the thermodynamic performance improves, and the difference between T(g) and T(x) is >120 degrees C. The Vickers microhardness is also modified greatly, about 245 kgf/mm(2). The optical spectra indicate that all absorption and emission bands of Dy(3+) are clearly observed and red-shifted with increasing Dy(3+) concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Up to now, in most of the research work done on the effect of hydrogen on a Schottky barrier, the hydrogen was introduced into the semiconductor before metal deposition. This letter reports that hydrogen can be effectively introduced into the Schottky barriers (SBs) of Au/n-GaAs and Ti/n-GaAs by plasma hydrogen treatment (PHT) after metal deposition on [100] oriented n-GaAs substrates. The Schottky barrier height (SBH) of a SB containing hydrogen shows the zero/reverse bias annealing (ZBA/RBA) effect. ZBA makes the SBH decrease and RBA makes it increase. The variations in the SBHs are reversible. In order to obtain obvious ZBA/RBA effects, selection of the temperature for plasma hydrogen treatment is important, and it is indicated that 100-degrees-C for Au/n-GaAs and 150-degrees-C for Ti/n-GaAs are suitable temperatures. It is concluded from the analysis of experimental results that only the hydrogen located at or near the metal-semiconductor interface, rather than the hydrogen in the bulk of either the semiconductor or the metal, is responsible for the ZBA/RBA effect on SBH.