998 resultados para heat value
Resumo:
In this paper, the available potential energy (APE) framework of Winters et al. (J. Fluid Mech., vol. 289, 1995, p. 115) is extended to the fully compressible Navier– Stokes equations, with the aims of clarifying (i) the nature of the energy conversions taking place in turbulent thermally stratified fluids; and (ii) the role of surface buoyancy fluxes in the Munk & Wunsch (Deep-Sea Res., vol. 45, 1998, p. 1977) constraint on the mechanical energy sources of stirring required to maintain diapycnal mixing in the oceans. The new framework reveals that the observed turbulent rate of increase in the background gravitational potential energy GPEr , commonly thought to occur at the expense of the diffusively dissipated APE, actually occurs at the expense of internal energy, as in the laminar case. The APE dissipated by molecular diffusion, on the other hand, is found to be converted into internal energy (IE), similar to the viscously dissipated kinetic energy KE. Turbulent stirring, therefore, does not introduce a new APE/GPEr mechanical-to-mechanical energy conversion, but simply enhances the existing IE/GPEr conversion rate, in addition to enhancing the viscous dissipation and the entropy production rates. This, in turn, implies that molecular diffusion contributes to the dissipation of the available mechanical energy ME =APE +KE, along with viscous dissipation. This result has important implications for the interpretation of the concepts of mixing efficiency γmixing and flux Richardson number Rf , for which new physically based definitions are proposed and contrasted with previous definitions. The new framework allows for a more rigorous and general re-derivation from the first principles of Munk & Wunsch (1998, hereafter MW98)’s constraint, also valid for a non-Boussinesq ocean: G(KE) ≈ 1 − ξ Rf ξ Rf Wr, forcing = 1 + (1 − ξ )γmixing ξ γmixing Wr, forcing , where G(KE) is the work rate done by the mechanical forcing, Wr, forcing is the rate of loss of GPEr due to high-latitude cooling and ξ is a nonlinearity parameter such that ξ =1 for a linear equation of state (as considered by MW98), but ξ <1 otherwise. The most important result is that G(APE), the work rate done by the surface buoyancy fluxes, must be numerically as large as Wr, forcing and, therefore, as important as the mechanical forcing in stirring and driving the oceans. As a consequence, the overall mixing efficiency of the oceans is likely to be larger than the value γmixing =0.2 presently used, thereby possibly eliminating the apparent shortfall in mechanical stirring energy that results from using γmixing =0.2 in the above formula.
Resumo:
Changes in texture, microstructure, colour and protein solubility of Thai indigenous and broiler chicken Pectoralis muscle stripes cooked at different temperatures were evaluated. The change in shear value of both chicken muscles was a significant increase from 50 to 80 degrees C but no change from 80 to 100 degrees C. A significant decrease in fibre diameter was obtained in samples heated to an internal temperature of 60 degrees C and the greatest shrinkage of sarcomeres was observed with internal temperatures of 70-100 and 80-100 C for broiler and indigenous chicken muscles, respectively (P < 0.05). Cooking losses of indigenous chicken muscles increased markedly in the temperature range 80-100 C and were significantly higher than those of the broiler (P < 0.001). With increasing temperature, from 50 to 70 degrees C, cooked chicken muscle became lighter and yellower. Relationships between changes in sarcomere length, fibre diameter, shear value, cooking loss and solubility of muscle proteins were evaluated. It was found that the solubility of muscle protein was very highly correlated with the texture of cooked broiler muscle while sarcomere length changes and collagen solubility were important factors influencing the cooking loss and texture of cooked indigenous chicken muscle. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Optical density measurements were used to estimate the effect of heat treatments on the single-cell lag times of Listeria innocua fitted to a shifted gamma distribution. The single-cell lag time was subdivided into repair time ( the shift of the distribution assumed to be uniform for all cells) and adjustment time (varying randomly from cell to cell). After heat treatments in which all of the cells recovered (sublethal), the repair time and the mean and the variance of the single-cell adjustment time increased with the severity of the treatment. When the heat treatments resulted in a loss of viability (lethal), the repair time of the survivors increased with the decimal reduction of the cell numbers independently of the temperature, while the mean and variance of the single-cell adjustment times remained the same irrespective of the heat treatment. Based on these observations and modeling of the effect of time and temperature of the heat treatment, we propose that the severity of a heat treatment can be characterized by the repair time of the cells whether the heat treatment is lethal or not, an extension of the F value concept for sublethal heat treatments. In addition, the repair time could be interpreted as the extent or degree of injury with a multiple-hit lethality model. Another implication of these results is that the distribution of the time for cells to reach unacceptable numbers in food is not affected by the time-temperature combination resulting in a given decimal reduction.
Resumo:
Research interest in oats has focussed on their nutritional value, but there have been few studies of their food processing. Heat treatment is characteristic of oat processing, as it is needed to inactivate lipase and to facilitate flaking. A Texture Analyser was used to characterise the mechanical properties of unkilned and kilned oat groats after steaming and tempering in an oven for 30, 60 and 90 min at 80, 95 and 110 degrees C. Maximum force, number of peaks before maximum and final force after 5s hold were used to characterise the behaviour of the groats during compression. Kilned groats were larger and softer before steaming. After steaming and tempering, the moisture content of the kilned groats was higher than for unkilned groats. Hot, steamed oats were softer than cold, unsteamed groats, indicated by a decrease in maximum force from 59 to 55 N, and there was no significant difference between kilned and unkilned groats. However, higher temperatures during tempering increased maximum force. These results suggest that mild steam treatment yields softer oat groats, whereas cold or over-treated groats tend to be harder. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we consider boundary integral methods applied to boundary value problems for the positive definite Helmholtz-type problem -DeltaU + alpha U-2 = 0 in a bounded or unbounded domain, with the parameter alpha real and possibly large. Applications arise in the implementation of space-time boundary integral methods for the heat equation, where alpha is proportional to 1/root deltat, and deltat is the time step. The corresponding layer potentials arising from this problem depend nonlinearly on the parameter alpha and have kernels which become highly peaked as alpha --> infinity, causing standard discretization schemes to fail. We propose a new collocation method with a robust convergence rate as alpha --> infinity. Numerical experiments on a model problem verify the theoretical results.
Resumo:
Sensible heat fluxes (QH) are determined using scintillometry and eddy covariance over a suburban area. Two large aperture scintillometers provide spatially integrated fluxes across path lengths of 2.8 km and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built residential areas and has an approximate source area of 2-4 km2, whilst the long path extends from the rural outskirts to the town centre and has a source area of around 5-10 km2. These large-scale heat fluxes are compared with local-scale eddy covariance measurements. Clear seasonal trends are revealed by the long duration of this dataset and variability in monthly QH is related to the meteorological conditions. At shorter time scales the response of QH to solar radiation often gives rise to close agreement between the measurements, but during times of rapidly changing cloud cover spatial differences in the net radiation (Q*) coincide with greater differences between heat fluxes. For clear days QH lags Q*, thus the ratio of QH to Q* increases throughout the day. In summer the observed energy partitioning is related to the vegetation fraction through use of a footprint model. The results demonstrate the value of scintillometry for integrating surface heterogeneity and offer improved understanding of the influence of anthropogenic materials on surface-atmosphere interactions.
Resumo:
The main goal of this work is to describe the anthropogenic energy flux (Q (F)) in the city of So Paulo, Brazil. The hourly, monthly, and annual values of the anthropogenic energy flux are estimated using the inventory method, and the contributions of vehicular, stationary, and human metabolism sources from 2004 to 2007 are considered. The vehicular and stationary sources are evaluated using the primary consumption of energy based on fossil fuel, bio fuel, and electricity usage by the population. The diurnal evolution of the anthropogenic energy flux shows three relative maxima, with the largest maxima occurring early in the morning (similar to 19.9 Wm(-2)) and in the late afternoon (similar to 20.3 Wm(-2)). The relative maximum that occurs around noontime (similar to 19.6 Wm(-2)) reflects the diurnal pattern of vehicle traffic that seems to be specific to So Paulo. With respect to diurnal evolution, the energy flux released by vehicular sources (Q (FV)) contributes approximately 50% of the total anthropogenic energy flux. Stationary sources (Q (FS)) and human metabolism (Q (FM)) represent about 41% and 9% of the anthropogenic energy flux, respectively. For 2007, the monthly values of Q (FV), Q (FS), Q (FM), and Q (F) are, respectively, 16.8 +/- 0.25, 14.3 +/- 0.16, 3.5 +/- 0.03, and 34.6 +/- 0.41 MJ m(-2) month(-1). The seasonal evolution monthly values of Q (FV), Q (FS), Q (FM), and Q (F) show a relative minimum during the summer and winter vacations and a systematic and progressive increase associated with the seasonal evolution of the economic activity in So Paulo. The annual evolution of Q (F) indicates that the city of So Paulo released 355.2 MJ m(-2) year(-1) in 2004 and 415.5 MJ m(-2) year(-1) in 2007 in association with an annual rate of increase of 19.6 MJ m(-2) year(-1) (from 2004 to 2006) and 30.5 MJ m(-2) year(-1) (from 2006 to 2007). The anthropogenic energy flux corresponds to about 9% of the net radiation at the surface in the summer and 15% in the winter. The amplitude of seasonal variation of the maximum hourly value of the diurnal variation increases exponentially with latitude.
Resumo:
The importance of investigating cost reduction in materials and components for solar thermal systems is crucial at the present time. This work focuses on the influence of two different heat exchangers on the performance of a solar thermal system. Both heat exchangers studied are immersed helically coiled, one made with corrugated stainless steel tube, and the other made with finned copper tube with smooth inner surface.A test apparatus has been designed and a simple test procedure applied in order to study heat transfer characteristics and pressure drop of both coils. Thereafter, the resulting experimental data was used to perform a parameter identification of the heat exchangers, in order to obtain a TRNSYS model with its corresponding numerical expression. Also a representative small-scale combisystem model was designed in TRNSYS, in order to study the influence of both heat exchangers on the solar fraction of the system, when working at different flow rates.It has been found that the highest solar fraction is given by the corrugated stainless steel coil, when it works at the lowest flow rate (100 l/hr). For any higher flow rate, the studied copper coil presents a higher solar fraction. The advantageous low flow performance of stainless steel heat exchanger turns out to be beneficial for the particular case of solar thermal systems, where it is well known that low flow collector loops lead to enhanced store stratification, and consequently higher solar fractions.Finally, an optimization of the stainless steel heat exchanger length is carried out, according to economic figures. For the given combisystem model and boundary conditions, the optimum length value is found between 10 and 12 m.
Resumo:
A novel method to measure oxidative stress resulting from exhaustive exercise in rats is presented. In this new procedure we evaluated the erythrocyte antioxidant enzymes, catalase ( CAT) and glutathione reductase (GR), the plasma oxidative attack markers, reactive carbonyl derivatives (RCD) and thiobarbituric reactive substances (TBARS). Muscular tissue damage was evaluated by monitoring plasma creatine kinase (CK) and plasma taurine ( Tau) concentrations. Also, we monitored total sulphydryl groups (TSG) and uric acid (UA), and the level of the 70 kDa heat shock protein (HSP70) in leukocytes as a marker of oxidative stress. In the study we found a correspondence between erythrocyte CAT and GR activities and leukocyte HSP70 levels, principally 3 h after the acute exercise, and this suggested an integrated mechanism of antioxidant defense. The increase in levels of plasma Tau was coincident with the increasing plasma levels of CK and TBARS, principally after two hours of exercise. Thus tissue damage occurred before the expression of any anti-oxidant system markers and the monitoring of Tau, CK or TBARS may be important for the estimation of oxidative stress during exhaustive exercise. Furthermore, the integrated analyses could be of value in a clinical setting to quantify the extent of oxidative stress risk and reduce the need to perform muscle biopsies as a tool of clinical evaluation.
Resumo:
1. The relationship between repeated thermal treatments and hepatic synthesis of Hsp 70 was studied in broiler chickens.2. Sixty broilers were submitted to 5 different treatments (12 birds each) from day 1 to day 42. Four groups were kept in a thermoneutral environment and subjected to 0, 1, 2 and 3 heat stress episodes at 35 degrees C for 4 h per week (TN-0, TN-1, TN-2 and TN-3, respectively). The last group (HT-35) was reared at a room temperature of 35 degrees C.3. From 39 to 42 old, the birds experienced acute heat stress at 41 degrees C. Resistance to heat stress was evaluated by the time taken for rectal temperature to increase by 3 degrees C above the pre-treatment value. Livers were collected (before and after heat stress) and Hsp70 was determined using Western Blot analysis with monoclonal anti-Hsp70 antibody.4. Resistance to heat stress and concentration of Hsp70 were higher in those birds subjected to more heat stress episodes during the experimental period (TN-3) and HT-35. A positive correlation was observed between Hsp70 concentration and the time taken for a 3 degrees C increase in rectal temperature (r=0.42; P<0.01).5. Exposing birds to episodes of heat stress (35 degrees C) during rearing may improve their resistance to acute heat stress, but the previous thermal history did not seem to influence the hepatocyte Hsp70 content after exposure to more severe heat stress (41 degrees C).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A comparison of the thermal regime and oxygen distribution patterns of some Brazilian reservoirs was made. A strong latitudinal dependence of surface temperature, annual mean and annual range was found. Except for Tucurui Reservoir, a reservoir of the Equatorial zone, the lowest surface temperature of the year in the other compared reservoirs was observed from June to August while the highest extended from October to February. The decreasing trend of annual mean temperatures and thermal ranges was due to the increasing seasonal variability of insolation with the latitude. A positive relationship between the increase on thermal surface-bottom differences and the depth of water column was found for reservoirs of similar latitudes. A long thermal stratification (around four months) was evidenced in the lacustrine zone of reservoirs with a residence time higher than 40 days. Low fluctuation (<2%) of the annual variability of heat contents was observed for the Tucurui Reservoir, while in das Garcas Reservoir a manmade lake located in the frontier between tropical and temperate regions, the annual coefficient of variation attained 13%. Concerning the heat budgets, the value for the Tucurui Reservoir was two times higher than in das Garcas Reservoir. Both the morphometric and climatological factors affected the heat contents of the two compared reservoirs. In deep eutrophic reservoirs, a significant reduction on the oxygen concentrations in the hypolimnetic zone was frequently observed. In some oligotrophic stratified reservoirs, a decrease on oxygen with depth occurred when the temperature of the hypolimnion was higher than 20 degrees C and caused a biochemical oxygen demand. In das Garcas Reservoir, the actual oxygen deficits ranged from 0.40 to 1.52 mg.O-2.cm(-2) and appear to be linked to oxygen consumption after the senescence of Microcystis aeruginosa populations in the spring. But, other factors such as the allochthonous loads of organic matter also had an important role on the oxygen balance of das Garcas Reservoir.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effect of temperature on the activity of acerola's pectin methylesterase (PME) was studied to determine its heat-inactivation. The acerola's pectin methylesterase (PME; EC: 3.1.1.11) is very stable at 50 degrees C (10% loss of activity in 100 min) and needed 110 min for its inactivation at 98 degrees C. These values are much higher than the ones required for inactivation of the citrus PME, that has been reported as being equal to 1 min at 90 degrees C. Heat-inactivation of PME was shown to be nonlinear, suggesting the presence of fractions of PME with differing heat-stabilities. The times to inactive the enzyme at 98, 102 and 106 degrees C were 110, 10 and 2.17 min, respectively. The Z value (the rise in temperature necessary to observe a ten times faster heat-inactivation) was 4.71 degrees C. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
We investigate theoretically a ferrofluid in the presence of a rotating magnetic field using a phenomenological approach based on a equation of motion for the magnetization. We verify that the heating rates of the system display a heat transfer between the host liquid and the magnetic nanoparticles (MNPs), with symmetric profiles dependent on the vorticity value. As a result, the total heating rate reveals a magnetovortical antiresonance and characterizes the suppression of the dissipation. © 2012 Springer Science+Business Media, LLC.