980 resultados para heat stability


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the numerical study of the linear stability of laminar premixed flames under zero gravity. The study specifically addresses the dependence of stability on finite rate chemistry with low activation energy and variable thermodynamic and transport properties. The calculations show that activation energy and details of chemistry play a minor role in altering the linear neutral stability results from asymptotic analysis. Variable specific heat makes a marginal change to the stability. Variable transport properties on the other hand tend to substantially enhance the stability from critical wave number of about 0.5 to 0.20. Also, it appears that the effects of variable properties tend to nullify the effects of non-unity Lewis number. When the Lewis number of a single species is different from unity, as will happen in a hydrogen-air premixed flame, the stability results remain close to that of unity Lewis number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructural changes of Al-22 wt%U and Al-46 wt%U alloys containing 3 wt% Zr were investigated after heat treatment at 620 degrees C for 1 to 45 days, Though it is reported that addition of similar to 3 wt% Zr stabilizes the (U,Zr)Al-3 phase at room temperature, the present investigation shows that the (U,Zr)Al-3 phase is not stable but slowly transforms to the U0.9Al4 phase, The high temperature creep curves generated for these ternary alloys showed a wavy pattern which also suggests that the (U,Zr)Al-3 phase is not stable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolutionary diversity of the HSP70 gene family at the genetic level has generated complex structural variations leading to altered functional specificity and mode of regulation in different cellular compartments. By utilizing Saccharomyces cerevisiae as a model system for better understanding the global functional cooperativity between Hsp70 paralogs, we have dissected the differences in functional properties at the biochemical level between mitochondrial heat shock protein 70 (mtHsp70) Ssc1 and an uncharacterized Ssc3 paralog. Based on the evolutionary origin of Ssc3 and a high degree of sequence homology with Ssc1, it has been proposed that both have a close functional overlap in the mitochondrial matrix. Surprisingly, our results demonstrate that there is no functional cross-talk between Ssc1 and Ssc3 paralogs. The lack of in vivo functional overlap is due to altered conformation and significant lower stability associated with Ssc3. The substrate-binding domain of Ssc3 showed poor affinity toward mitochondrial client proteins and Tim44 due to the open conformation in ADP-bound state. In addition to that, the nucleotide-binding domain of Ssc3 showed an altered regulation by the Mge1 co-chaperone due to a high degree of conformational plasticity, which strongly promotes aggregation. Besides, Ssc3 possesses a dysfunctional inter-domain interface thus rendering it unable to perform functions similar to generic Hsp70s. Moreover, we have identified the critical amino acid sequence of Ssc1 and Ssc3 that can ``make or break'' mtHsp70 chaperone function. Together, our analysis provides the first evidence to show that the nucleotide-binding domain of mtHsp70s plays a critical role in determining the functional specificity among paralogs and orthologs across kingdoms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary structure and function of nucleoside diphosphate kinase (NDK), a substrate non-specific enzyme involved in the maintenance of nucleotide pools is also implicated to play pivotal roles in many other cellular processes. NDK is conserved from bacteria to human and forms a homotetramer or hexamer to exhibit its biological activity. However, the nature of the functional oligomeric form of the enzyme differs among different organisms. The functional form of NDKs from many bacterial systems, including that of the human pathogen, Mycobacterium tuberculosis (MtuNDK), is a hexamer, although some bacterial NDKs are tetrameric in nature. The present study addresses the oligomeric property of MsmNDK and how a dimer, the basic subunit of a functional hexamer, is stabilized by hydrogen bonds and hydrophobic interactions. Homology modeling was generated using the three-dimensional structure of MtuNDK as a template; the residues interacting at the monomer-monomer interface of MsmNDK were mapped. Using recombinant enzymes of wild type, catalytically inactive mutant, and monomer-monomer interactive mutants of MsmNDK, the stability of the dimer was verified under heat, SDS, low pH, and methanol. The predicted residues (Gln17, Ser24 and Glu27) were engaged in dimer formation, however the mutated proteins retained the ATPase and GTPase activity even after introducing single (MsmNDK- Q17A, MsmNDK-E27A, and MsmNDK-E27Q) and double (MsmNDK-E27A/Q17A) mutation. However, the monomer monomer interaction could be abolished using methanol, indicating the stabilization of the monomer-monomer interaction by hydrophobic interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ni49.4Ti38.6Hf12 shape memory alloy has been characterized for structure, microstructure and transformation temperatures. The microstructure of the as-cast sample consists of B19' and R-phases, and (Ti,Hf)(2)Ni precipitate phase along the grain boundaries in the form of dendrites. The microstructure of the solution treated sample contains only B19' martensite phase, whereas a second heat treatment after solutionizing results in reappearance of the R-phase and the (Ti,Hf)(2)Ni grain boundary precipitate phase in the microstructure. A detailed microstructural examination shows the presence of precipitates having both coherent and incoherent interface with the matrix, the type of interface being dictated by the crystallographic orientation of the matrix phase. The present study shows that the (Ti,Hf)(2)Ni precipitates having coherent interface with the matrix, drive the formation of the R-phase in the microstructure. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal stability of Nd60Fe20Co10Al10 bulk metallic glass (BMG) has been studied by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), isochronal dilatation and compression tests. The results show that the glass transition of the BMG takes place quite gradually between about 460 and 650 K at a heating rate of 0.17 K/s. Several transformation processes are observed during continuous heating with the first crystallization process beginning at about 460 K, while massive crystallization takes place near the solidus temperature of the alloy. The positive heat of mixing between the two major constituents, Nd and Fe, and, consequently, a highly inhomogeneous composition of the attained amorphous phase are responsible for the anomalous thermal stability in this system. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose and analyse a new model of thermocapillary convection with evaporation in a cavity subjected to horizontal temperature gradient, rather than the previously studied model without evaporation. The pure liquid layer with a top free surface in contact with its own vapour is considered in microgravity condition. The computing programme developed for simulating this model integrates the two-dimensional, time-dependent Navier-Stokes equations and energy equation by a second-order accurate projection method. We focus on the coupling of evaporation and thermocapillary convection by investigating the influence of evaporation Biot number and Marangoni number on the interfacial mass and heat transfer. Three different regimes of the coupling mechanisms are found and explained from our numerical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of chilled and frozen storage on specific enthalpy (ΔH) and transition temperature (Td) of protein denaturation as well as on selected functional properties of muscle tissue of rainbow trout and herring were investigated. The Td of myosin shifted from 39 to 33 °C during chilling of trout post mortem, but was also influenced by pH. Toughening during frozen storage of trout fillet was characterized by an increased storage modulus of a gel made from the raw fillet. Differences between long term and short term frozen stored, cooked trout fillet were identified by a compression test and a consumer panel. These changes did not affect the Td and ΔH of heat denaturation during one year of frozen storage at –20 °C. In contrast the Td of two myosin peaks of herring shifted during frozen storage at –20 °C to a significant lower value and overlaid finally. Myosin was aggregated by hydrophobic protein-protein interactions. Both thermal properties of myosin and chemical composition were sample specific for wild herring, but were relative constant for farmed trout samples over one year. Determination of Td was very precise (standard deviation <2 %) at a low scanning rate (≤ 0.25 K·min-1) and is useful for monitoring the quality of chilled and frozen stored trout and herring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In present study, effect of interfacial heat transfer with ambient gas on the onset of oscillatory convection in a liquid bridge of large Prandtl number on the ground is systematically investigated by the method of linear stability analyses. With both the constant and linear ambient air temperature distributions, the numerical results show that the interfacial heat transfer modifies the free-surface temperature distribution directly and then induces a steeper temperature gradient on the middle part of the free surface, which may destabilize the convection. On the other hand, the interfacial heat transfer restrains the temperature disturbances on the free surface, which may stabilize the convection. The two coupling effects result in a complex dependence of the stability property on the Biot number. Effects of melt free-surface deformation on the critical conditions of the oscillatory convection were also investigated. Moreover, to better understand the mechanism of the instabilities, rates of kinetic energy change and "thermal" energy change of the critical disturbances were investigated (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we develop a linear technique that predicts how the stability of a thermo-acoustic system changes due to the action of a generic passive feedback device or a generic change in the base state. From this, one can calculate the passive device or base state change that most stabilizes the system. This theoretical framework, based on adjoint equations, is applied to two types of Rijke tube. The first contains an electrically-heated hot wire and the second contains a diffusion flame. Both heat sources are assumed to be compact so that the acoustic and heat release models can be decoupled. We find that the most effective passive control device is an adiabatic mesh placed at the downstream end of the Rijke tube. We also investigate the effects of a second hot wire and a local variation of the cross-sectional area but find that both affect the frequency more than the growth rate. This application of adjoint sensitivity analysis opens up new possibilities for the passive control of thermo-acoustic oscillations. For example, the influence of base state changes can be combined with other constraints, such as that the total heat release rate remains constant, in order to show how an unstable thermo-acoustic system should be changed in order to make it stable. Copyright © 2013 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molar heat capacities of 1-(2-hydroxy-3-chloropropyl)-2-methyl-5-nitroimidazole (Ornidazole) (C7H10CIN3O3) with purity of 99.72mol% were measured with an adiabatic calorimeter in the temperature range between 79 and 380K. The melting-point temperature, molar enthalpy Delta(fus)H(m), and entropy, Delta(fus)S(m), of fusion of this compound were determined to be 358.59 +/- 0.04K, 21.38 +/- 0.02 kJ mol(-1) and 59.61 +/- 0.05 J K-1 mol(-1), respectively, from fractional melting experiments. The thermodynamic function data relative to the reference temperature (298.15 K) were calculated based on the heat capacities measurements in the temperature range from 80 to 380 K. The thermal stability of the compound was further investigated by DSC and TG. From the DSC curve an intensive exothermic peak assigned to the thermal decomposition of the compound was observed in the range of 445-590 K with the peak temperature of 505 K. Subsequently, a slow exothermic effect appears when the temperature is higher than 590 K, which is probably due to the further decomposition of the compound. The TG curve indicates the mass loss of the sample starts at about 440K, which corresponds to the decomposition of the sample. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carboxin was synthesized and its heat capacities were measured with an automated adiabatic calorimeter over the temperature range from 79 to 380K. The melting point, molar enthalpy (Delta(fus)H(m)) and entropy (Delta(fus)S(m)) of fusion of this compound were determined to be 365.29 +/- 0.06K, 28.193 +/- 0.09 kJ mol(-1) and 77.180 +/- 0.02 J mol(-1) K-1, respectively. The purity of the compound was determined to be 99.55 mol% by using the fractional melting technique. The thermodynamic functions relative to the reference temperature (298.15 K) were calculated based on the heat capacity measurements in the temperature range between 80 and 360 K. The thermal stability of the compound was further investigated by differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis. The DSC curve indicates that the sample starts to decompose at ca. 290degreesC with the peak temperature at 292.7degreesC. The TG-DTG results demonstrate the maximum mass loss rate occurs at 293degreesC corresponding to the maximum decomposition rate. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low-temperature heat capacities of 2-chloro-5-trichloromethylpyridine were measured with a high-precision automated adiabatic calorimeter in the temperature range from 80 K to 345 K. A solid-liquid phase transition was observed from 318.57 K to 327.44 K with peak temperature 324.67 K; the molar enthalpy and entropy of phase transition, DeltaH(m) and DeltaS(m), were determined to be 14.50 +/-0.02 kJ mol(-1) and 44.66 +/- 0.07 kJ K-1 mol(-1), respectively. The thermal stability was investigated through thermogravimetric analysis (TG). The TG and DTG results reveal that 2-chloro-5-trichloromethylpyridine starts to lose mass at 332 K due to evaporation and completely changes into vapour at 483 K under the present experimental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High melt strength polypropylene (HMSPP) was synthesized by in situ heat induction reaction, in which pure polypropylene (PP) powders without any additives were used as a basic resin and vinyl trimethoxysilane (VTMS) as a grafting and crosslinking agent. The grafting reaction of VTMS with PP was confirmed by FTIR. The structure and properties of HMSPP were characterized by means of various measurements. The content of grafted silane played a key role on the melt strength and melt flow rate (MFR) of HMSPP. With increasing the content of grafted silane, the melt strength of HMSPP increased, and the MFR reduced. In addition, due to the existence of cross-linking structure, the thermal stability and tensile strength of HMSPP were improved compared with PP.