948 resultados para habitat condition
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Identifying the differences in habitat use for sympatric species is important for understanding the species preferences and the limits of population distribution. We studied the differences in the habitat use of two understudied sympatric species of Ameiva (A. festiva and A. quadrilineata) in a natural reserve of the Caribbean coast of Coast Rica. Ameiva quadrilineata showed a more restrictive habitat use pattern than A. festiva. A. quadrilineata's smaller body size may be one of the factors limiting its habitat range. Both species showed higher density in regenerated forests, while A. quadrilineata was never found in swamp forests. The air temperature and the meteorological condition at the moment of the survey also influenced the occurrence of the A. quadrilineata, while the juveniles of A. festiva were only affected by the meteorological condition. None of the studied variables seemed to affect the occurrence of A. festiva adults. The results of this study can be useful to evaluate possible changes in the species distribution patterns as a consequence of direct (i.e., deforestation) or indirect (i.e., climate change) human activities in the distribution area of these species.
Resumo:
Human-induced forest modification can alter parasite-host interactions and might change the persistence of host populations. We captured individuals of two widespread European passerines (Fringilla coelebs and Sylvia atricapilla) in southwestern Germany to disentangle the associations of forest types and parasitism by haemosporidian parasites on the body condition of birds. We compared parasite prevalence and parasite intensity, fluctuating asymmetries, leukocyte numbers, and the heterophil to lymphocyte ratio (H/L-ratio) among individuals from beech, mixed-deciduous and spruce forest stands. Based on the biology of bird species, we expected to find fewer infected individuals in beech or mixed-deciduous than in spruce forest stands. We found the highest parasite prevalence and intensity in beech forests for F. coelebs. Although, we found the highest prevalence in spruce forests for S. atricapilla, the highest intensity was detected in beech forests, partially supporting our hypothesis. Other body condition or health status metrics, such as the heterophil to lymphocyte ratio (H/L-ratio), revealed only slight differences between bird populations inhabiting the three different forest types, with the highest values in spruce for F. coelebs and in mixed-deciduous forests for S. atricapilla. A comparison of parasitized versus non-parasitized individuals suggests that parasite infection increased the immune response of a bird, which was detectable as high H/L-ratio. Higher infections with blood parasites for S. atricapilla in spruce forest indicate that this forest type might be a less suitable habitat than beech and mixed-deciduous forests, whereas beech forests seem to be a suboptimal habitat regarding parasitism for F. coelebs.
Resumo:
Background: A small pond, c. 90 years old, near Bern, Switzerland contains a population of threespine stickleback (Gasterosteus aculeatus) with two distinct male phenotypes. Males of one type are large, and red, and nest in the shallow littoral zone. The males of the other are small and orange, and nest offshore at slightly greater depth. The females in this population are phenotypically highly variable but cannot easily be assigned to either male type. Question: Is the existence of two sympatric male morphs maintained by substrate-associated male nest site choice and facilitated by female mate preferences? Organisms: Male stickleback caught individually at their breeding sites. Females caught with minnow traps. Methods: In experimental tanks, we simulated the slope and substrate of the two nesting habitats. We then placed individual males in a tank and observed in which habitat the male would build his nest. In a simultaneous two-stimulus choice design, we gave females the choice between a large, red male and a small, orange one. We measured female morphology and used linear mixed effect models to determine whether female preference correlated with female morphology. Results: Both red and orange males preferred nesting in the habitat that simulated the slightly deeper offshore condition. This is the habitat occupied by the small, orange males in the pond itself. The proportion of females that chose a small orange male was similar to that which chose a large red male. Several aspects of female phenotype correlated with the male type that a female preferred.
Resumo:
Energy availability and local adaptation are major components in mediating the effects of ocean acidification (OA) on marine species. In a long-term study, we investigated the effects of food availability and elevated pCO2 (ca 400, 1000 and 3000 µatm) on growth of newly settled Amphibalanus (Balanus) improvisus to reproduction, and on their offspring. We also compared two different populations, which were presumed to differ in their sensitivity to pCO2 due to differing habitat conditions: Kiel Fjord, Germany (Western Baltic Sea) with naturally strong pCO2 fluctuations, and the Tjärnö Archipelago, Sweden (Skagerrak) with far lower fluctuations. Over 20 weeks, survival, growth, reproduction and shell strength of Kiel barnacles were all unaffected by elevated pCO2, regardless of food availability. Moulting frequency and shell corrosion increased with increasing pCO2 in adults. Larval development and juvenile growth of the F1 generation were tolerant to increased pCO2, irrespective of parental treatment. In contrast, elevated pCO2 had a strong negative impact on survival of Tjärnö barnacles. Specimens from this population were able to withstand moderate levels of elevated pCO2 over 5 weeks when food was plentiful but showed reduced growth under food limitation. Severe levels of elevated pCO2 negatively impacted growth of Tjärnö barnacles in both food treatments. We demonstrate a conspicuously higher tolerance to elevated pCO2 in Kiel barnacles than in Tjärnö barnacles. This tolerance was carried-over from adults to their offspring. Our findings indicate that populations from fluctuating pCO2 environments are more tolerant to elevated pCO2 than populations from more stable pCO2 habitats. We furthermore provide evidence that energy availability can mediate the ability of barnacles to withstand moderate CO2 stress. Considering the high tolerance of Kiel specimens and the possibility to adapt over many generations, near future OA alone does not seem to present a major threat for A. improvisus
Resumo:
A population of the grassland earless dragon (Tympanocryptis pinguicolla) on the Darling Downs, Queensland, Australia, had been considered extinct until its recent rediscovery. We determined factors affecting grassland earless dragon abundance and prey availability in 3 habitats. Mean dragon body condition and prey numbers were higher in sorghum than grasslands and grass verges. Poisson regression analyses indicated that the dragon numbers were 10 times higher in sorghum, and that this may result from differences in prey numbers as well as other habitat conditions. Tracking data indicated selection of open versus closed microhabitat. Sorghum planted in rows provided alternating open and closed microhabitats for optimal thermoregulation conditions. Grasslands and grass verges were more uniformly shaded. Of individuals we tracked in the sorghum stubble, 85.7% used litter as overnight refuges. Litter was abundant in sorghum and sparse in grass habitats. The practices of minimum tillage and resting stubble strips possibly mitigate agricultural impacts on dragons and provide continuous access to suitable habitat. Changes in agricultural practices that affect the habitat suitability will potentially have detrimental impacts on the population. Our data suggest that conservation efforts be focused on maintaining suitability of habitats in crop fields. We recommend monitoring dragon abundance at control and trial sites of any new agricultural practices; this will provide opportunity to modify or stop undesirable practices before adoption by farmers. Conservation agencies may use our data as a baseline for monitoring long-term viability of the population.
Does landscape context affect habitat value? The importance of seascape ecology in back-reef systems
Resumo:
Seascape ecology provides a useful framework from which to understand the processes governing spatial variability in ecological patterns. Seascape context, or the composition and pattern of habitat surrounding a focal patch, has the potential to impact resource availability, predator-prey interactions, and connectivity with other habitats. For my dissertation research, I combined a variety of approaches to examine how habitat quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, back-reef ecosystems. In the first part of my dissertation, I examined how seascape context can affect reef fish communities on an experimental array of artificial reefs created in various seascape contexts in Abaco, Bahamas. I found that the amount of seagrass at large spatial scales was an important predictor of community assembly on these reefs. Additionally, seascape context had differing effects on various aspects of habitat quality for the most common reef species, White grunt Haemulon plumierii. The amount of seagrass at large spatial scales had positive effects on fish abundance and secondary production, but not on metrics of condition and growth. The second part of my dissertation focused on how foraging conditions for fish varied across a linear seascape gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus griseus, traded food quality for quantity along this estuarine gradient, maintaining similar growth rates and condition among sites. Additional work focused on identifying major energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. Algal and microphytobenthos resource pools supported most of the production to these consumers, and body size for one of the consumers mediated food web linkages with surrounding mangrove habitats. All of these studies examined a different facet of the importance of seascape context in governing ecological processes occurring in focal habitats and underscore the role of connectivity among habitats in back-reef systems. The results suggest that management approaches consider the surrounding seascape when prioritizing areas for conservation or attempting to understand the impacts of seascape change on focal habitat patches. For this reason, spatially-based management approaches are recommended to most effectively manage back-reef systems.
Resumo:
The Big Manistee River was one of the most well known Michigan rivers to historically support a population of Arctic grayling (Thymallus arctics). Overfishing, competition with introduced fish, and habitat loss due to logging are believed to have caused their decline and ultimate extirpation from the Big Manistee River around 1900 and from the State of Michigan by 1936. Grayling are a species of great cultural importance to Little River Band of Ottawa Indian tribal heritage and although past attempts to reintroduce Arctic grayling have been unsuccessful, a continued interest in their return led to the assessment of environmental conditions of tributaries within a 21 kilometer section of the Big Manistee River to determine if suitable habitat exists. Although data describing historical conditions in the Big Manistee River is limited, we reviewed the literature to determine abiotic conditions prior to Arctic grayling disappearance and the habitat conditions in rivers in western and northwestern North America where they currently exist. We assessed abiotic habitat metrics from 23 sites distributed across 8 tributaries within the Manistee River watershed. Data collected included basic water parameters, streambed substrate composition, channel profile and areal measurements of channel geomorphic unit, and stream velocity and discharge measurements. These environmental condition values were compared to literature values, habitat suitability thresholds, and current conditions of rivers with Arctic grayling populations to assess the feasibility of the abiotic habitat in Big Manistee River tributaries to support Arctic grayling. Although the historic grayling habitat in the region was disturbed during the era of major logging around the turn of the 20th century, our results indicate that some important abiotic conditions within Big Manistee River tributaries are within the range of conditions that support current and past populations of Arctic grayling. Seven tributaries contained between 20-30% pools by area, used by grayling for refuge. All but two tributaries were composed primarily of pebbles, with the remaining two dominated by fine substrates (sand, silt, clay). Basic water parameters and channel depth were within the ranges of those found for populations of Arctic grayling persisting in Montana, Alaska, and Canada for all tributaries. Based on the metrics analyzed in this study, suitable abiotic grayling habitat does exist in Big Manistee River tributaries.
Does Landscape Context Affect Habitat Value? The Importance of Seascape Ecology in Back-reef Systems
Resumo:
Seascape ecology provides a useful framework from which to understand the processes governing spatial variability in ecological patterns. Seascape context, or the composition and pattern of habitat surrounding a focal patch, has the potential to impact resource availability, predator-prey interactions, and connectivity with other habitats. For my dissertation research, I combined a variety of approaches to examine how habitat quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, back-reef ecosystems. In the first part of my dissertation, I examined how seascape context can affect reef fish communities on an experimental array of artificial reefs created in various seascape contexts in Abaco, Bahamas. I found that the amount of seagrass at large spatial scales was an important predictor of community assembly on these reefs. Additionally, seascape context had differing effects on various aspects of habitat quality for the most common reef species, White grunt Haemulon plumierii. The amount of seagrass at large spatial scales had positive effects on fish abundance and secondary production, but not on metrics of condition and growth. The second part of my dissertation focused on how foraging conditions for fish varied across a linear seascape gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus griseus, traded food quality for quantity along this estuarine gradient, maintaining similar growth rates and condition among sites. Additional work focused on identifying major energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. Algal and microphytobenthos resource pools supported most of the production to these consumers, and body size for one of the consumers mediated food web linkages with surrounding mangrove habitats. All of these studies examined a different facet of the importance of seascape context in governing ecological processes occurring in focal habitats and underscore the role of connectivity among habitats in back-reef systems. The results suggest that management approaches consider the surrounding seascape when prioritizing areas for conservation or attempting to understand the impacts of seascape change on focal habitat patches. For this reason, spatially-based management approaches are recommended to most effectively manage back-reef systems.