967 resultados para guided-wave optics


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some aspects of numerical simulation of Lamb wave propagation in composite laminates using the finite element models with explicit dynamic analysis are addressed in this study. To correctly and efficiently describe the guided-wave excited/received by piezoelectric actuators/sensors, effective models of surface-bounded flat PZT disks based on effective force, moment and displacement are developed. Different finite element models for Lamb wave excitation, collection and propagation in isotropic plate and quasi-isotropic laminated composite are evaluated using continuum elements (3-D solid element) and structural elements (3-D shell element), to elaborate the validity and versatility of the proposed actuator/sensor models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 5-day training in Nonimaging Optics for European SME’s employees was carried out in June 2012 in the framework of the FP7 funded Support Action "SMETHODS". The training combined theoretical introduction and hands-on practice. The experience was very positive, and the lessons learned will improve the next scheduled sessions. Introduction The FP7 funded Support Action "SMETHODS" [1] is an initiative of seven European academic institutions to strengthen Europe's optics and photonics industry, which has started on 1 September 2011. Participation in training sessions is free for participants, who are selected with priority will be given to employees of small and medium sized European enterprises (SMEs). The consortium in SMETHODS is formed by seven partners that are the most prominent academic institutions in optical design in their countries. Through fully integrated collaborative training sessions, the consortium provides professional assistance as well as hands-on training in a variety of design tasks in four domains: (1) imaging optics, (2) nonimaging optics, (3) wave optics, and (4) diffractive optics. For each of this domains domain, 5-day training sessions are scheduled to be hold in different locations throughout Europe, four times in two years, the teach four times in a 2.5 years period.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) is an emerging area of research associated to improvement of maintainability and the safety of aerospace, civil and mechanical infrastructures by means of monitoring and damage detection. Guided wave structural testing method is an approach for health monitoring of plate-like structures using smart material piezoelectric transducers. Among many kinds of transducers, the ones that have beam steering feature can perform more accurate surface interrogation. A frequency steerable acoustic transducer (FSATs) is capable of beam steering by varying the input frequency and consequently can detect and localize damage in structures. Guided wave inspection is typically performed through phased arrays which feature a large number of piezoelectric transducers, complexity and limitations. To overcome the weight penalty, the complex circuity and maintenance concern associated with wiring a large number of transducers, new FSATs are proposed that present inherent directional capabilities when generating and sensing elastic waves. The first generation of Spiral FSAT has two main limitations. First, waves are excited or sensed in one direction and in the opposite one (180 ̊ ambiguity) and second, just a relatively rude approximation of the desired directivity has been attained. Second generation of Spiral FSAT is proposed to overcome the first generation limitations. The importance of simulation tools becomes higher when a new idea is proposed and starts to be developed. The shaped transducer concept, especially the second generation of spiral FSAT is a novel idea in guided waves based of Structural Health Monitoring systems, hence finding a simulation tool is a necessity to develop various design aspects of this innovative transducer. In this work, the numerical simulation of the 1st and 2nd generations of Spiral FSAT has been conducted to prove the directional capability of excited guided waves through a plate-like structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Round timbers are extensively used as utility poles in Australia for electricity distribution and communication. Lack of information on their conditions results in great difficulties on asset management for industries. Despite the development of various non-destructive testing (NDT) techniques for evaluating the condition of piles, few NDTs are reported for applications on timber poles. This paper addresses challenges and issues on development of NDTs for condition assessment and embedded length of timber poles. For this paper, it is mainly focusing on determining the embedded length of the pole considering loss of the sufficient embedment length is a main factor compromising capacity and safety of timber poles. Since it is impractical for generating longitudinal waves by impacting from the top of poles, utilizing flexural wave from side impact on poles becomes attractive. However, the flexural wave is known by its highly dispersive nature. In this paper, one dimensional wave theory, guided wave theory and advanced signal processing techniques have been introduced in order to provide a solution for the problem. Two signal processing techniques, namely short kernel method and continuous wavelet transform, have been investigated for processing flexural wave signals to evaluate wave velocity and embedment length of timber poles in service.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Round timbers are used for telecommunication and power distribution networks, jetties, piles, short span bridges etc. To assess the condition of these cylindrical shape timber structures, bulk and elementary wave theory are usually used. Even though guided wave can represents the actual wave behaviour, a great deal complexity exists to model stress wave propagation within an orthotropic media, such as timber. In this paper, timber is modelled as transversely isotropic material without compromising the accuracy to a great extent. Dispersion curves and mode shapes are used to propose an experimental set up in terms of the input frequency and bandwidth of the signal, the orientation of the sensor and the distance between the sensors in order to reduce the effect of the dispersion in the output signal. Some example based on the simulated signal is also discussed to evaluate the proposed experimental set up.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Low strain integrity testing is commonly used to assess the in situ condition of the poles or piles. For poles, it is important to calculate the embedment length and location of damage which is highly influenced by the accurate determination of the wave velocity. In general, depending on impact location and orientation, both longitudinal and bending waves may generate inside the pole, and these two waves have very distinct characteristics and wave velocity. These differences are even more prominent in the low frequency which is usually induced in the low strain non-destructive testing. Consequently, it will be useful if these two waves can be separated for the condition assessment of the poles. In this paper, a numerical analysis is performed on a pole considering that both waves are generated, and a method is proposed to differentiate these two waves based on an appropriate sensor arrangement that includes the location and the orientation of the sensors. Continuous wavelet transform is applied on the numerical signal to calculate the phase velocity of the waves and compared with analytical phase velocity curves. From the results, it can be seen that appropriate location and orientation of the sensors can separate the longitudinal and flexural waves as they match significantly well with the corresponding analytical phase velocity curves of these two waves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A first order optical system is investigated in full generality within the context of wave optics. The problem is reduced to a study of the ray transfer matrices. The simplest such systems correspond to axially symmetric propagation. Realization of such systems by centrally located lenses separated by finite distances is studied. It is shown that, contrary to the commonly held view, the set of first order systems that can be realized using axially symmetric thin lenses exhausts the entire SL(2, R) group; at most three lenses are needed to realize any element of this group. In particular, the inverse of free propagation can be so realized. Among anisotropic systems it is again shown that every element of the lens group Sp(4, R) can be realized using a finite number of thin lenses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The basic photonic switching elements of practical importance are outlined. A detailed comparative study of photonic switching architectures is presented both for guided wave fabrics and free-space fabrics. The required equations for comparative study are obtained, after considering the parameters like bend losses, effects of waveguide crossings, etc. The potential areas of application of photonic switching are pointed out.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The assembly of aerospace and automotive structures in recent years is increasingly carried out using adhesives. Adhesive joints have advantages of uniform stress distribution and less stress concentration in the bonded region. Nevertheless, they may suffer due to the presence of defects in bond line and at the interface or due to improper curing process. While defects like voids, cracks and delaminations present in the adhesive bond line may be detected using different NDE methods, interfacial defects in the form of kissing bond may go undetected. Attempts using advanced ultrasonic methods like nonlinear ultrasound and guided wave inspection to detect kissing bond have met with limited success stressing the need for alternate methods. This paper concerns the preliminary studies carried out on detectability of dry contact kissing bonds in adhesive joints using the Digital Image Correlation (DIC) technique. In this attempt, adhesive joint samples containing varied area of kissing bond were prepared using the glass fiber reinforced composite (GFRP) as substrates and epoxy resin as the adhesive layer joining them. The samples were also subjected to conventional and high power ultrasonic inspection. Further, these samples were loaded till failure to determine the bond strength during which digital images were recorded and analyzed using the DIC method. This noncontact method could indicate the existence of kissing bonds at less than 50% failure load. Finite element studies carried out showed a similar trend. Results obtained from these preliminary studies are encouraging and further tests need to be done on a larger set of samples to study experimental uncertainties and scatter associated with the method. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present paper, the ultrasonic strain sensing performance of large-area piezoceramic coating with Inter Digital Transducer (IDT) electrodes is studied. The piezoceramic coating is prepared using slurry coating technique and the piezoelectric phase is achieved by poling under DC field. To study the sensing performance of the piezoceramic coating with IDT electrodes for strain induced by the guided waves, the piezoceramic coating is fabricated on the surface of a beam specimen at one end and the ultrasonic guided waves are launched with a piezoelectric wafer bonded on another end. Often a wider frequency band of operation is needed for the effective implementation of the sensors in the Structural Health Monitoring (SHM) of various structures, for different types of damages. A wider frequency band of operation is achieved in the present study by considering the variation in the number of IDT electrodes in the contribution of voltage for the induced dynamic strain. In the present work, the fabricated piezoceramic coatings with IDT electrodes have been characterized for dynamic strain sensing applications using guided wave technique at various different frequencies. Strain levels of the launched guided wave are varied by varying the magnitude of the input voltage sent to the actuator. Sensitivity variation with the variation in the strain levels of guided wave is studied for the combination of different number of IDT electrodes. Piezoelectric coefficient e(11) is determined at different frequencies and at different strain levels using the guided wave technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents a new approach for the numerical solution of three-dimensional problems in elastodynamics. The new methodology, which is based on a recently introduced Fourier continuation (FC) algorithm for the solution of Partial Differential Equations on the basis of accurate Fourier expansions of possibly non-periodic functions, enables fast, high-order solutions of the time-dependent elastic wave equation in a nearly dispersionless manner, and it requires use of CFL constraints that scale only linearly with spatial discretizations. A new FC operator is introduced to treat Neumann and traction boundary conditions, and a block-decomposed (sub-patch) overset strategy is presented for implementation of general, complex geometries in distributed-memory parallel computing environments. Our treatment of the elastic wave equation, which is formulated as a complex system of variable-coefficient PDEs that includes possibly heterogeneous and spatially varying material constants, represents the first fully-realized three-dimensional extension of FC-based solvers to date. Challenges for three-dimensional elastodynamics simulations such as treatment of corners and edges in three-dimensional geometries, the existence of variable coefficients arising from physical configurations and/or use of curvilinear coordinate systems and treatment of boundary conditions, are all addressed. The broad applicability of our new FC elasticity solver is demonstrated through application to realistic problems concerning seismic wave motion on three-dimensional topographies as well as applications to non-destructive evaluation where, for the first time, we present three-dimensional simulations for comparison to experimental studies of guided-wave scattering by through-thickness holes in thin plates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe the use of a Wigner distribution function approach for exploring the problem of extending the depth of field in a hybrid imaging system. The Wigner distribution function, in connection with the phase-space curve that formulates a joint phase-space description of an optical field, is employed as a tool to display and characterize the evolving behavior of the amplitude point spread function as a wave propagating along the optical axis. It provides a comprehensive exhibition of the characteristics for the hybrid imaging system in extending the depth of field from both wave optics and geometrical optics. We use it to analyze several well-known optical designs in extending the depth of field from a new viewpoint. The relationships between this approach and the earlier ambiguity function approach are also briefly investigated. (c) 2006 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Static optical transmission is restudied by postulation of the optical path as the proper element in a three-dimensional Riemannian manifold (no torsion); this postulation can be applied to describe the light-medium interactive system. On the basis of the postulation, the behaviors of light transmitting through the medium with refractive index n are investigated, the investigation covering the realms of both geometrical optics and wave optics. The wave equation of light in static transmission is studied modally, the postulation being employed to derive the exact form of the optical field equation in a medium (in which the light is viewed as a single-component field). Correspondingly, the relationships concerning the conservation of optical fluid and the dynamic properties are given, and some simple applications of the theories mentioned are presented.