974 resultados para growth variability


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The knowledge about the optimal rearing conditions, such as water temperature and quality, photoperiod and density, with the understanding of animal nutritional requirements forms the basis of economically stable aquaculture for freshwater crayfish. However, the shift from a natural environment to effective culture conditions induces several changes, not only at the population level, but also at the individual level. The social contacts between conspecifics increase with increasing animal density. The competition for limited resources (e.g. food, shelter, mates) is more severe with the presence of agonistic behaviour and may lead to unequal distribution of these. The objectives of this study were to: 1) study the distribution of a common food resource between communally reared signal crayfish (Pacifastacus leniusculus) and to assign potential feeding hierarchy on the basis of individual food intake measurements, 2) explore the possibilities of size distribution manipulations to affect population dynamics and food intake to improve growth and survival in culture and 3) study the effect of food ration and spatial distribution on food intake and to explore the effect of temperature and food ration on growth and body composition of freshwater crayfish. The feeding ranks between animals were assigned with a new method for individual food intake measurement of communally reared crayfish. This technique has a high feasibility and a great potential to be applied in crayfish aquaculture studies. In this study, signal crayfish showed high size-related variability in food consumption both among individuals within a group (inter-individual) and within individual day-to-day variation (intra-individual). Increased competition for food led to an unequal distribution of this resource and this may be a reason for large growth differences between animals. The consumption was significantly higher when reared individually in comparison with communal housing. These results suggest that communally housed crayfish form a feeding hierarchy and that the animal size is the major factor controlling the position in this hierarchy. The optimisation of the social environment ( social conditions ) was evaluated in this study as a new approach to crayfish aquaculture. The results showed that the absence of conspecifics (individual rearing vs. communal housing) affects growth rate, food intake and the proportion of injured animals, whereas size variation between animals influences the number and duration of agonistic encounters. In addition, animal size had a strong influence on the fighting success of signal crayfish reared in a social milieu with a wide size variation of conspecifics. Larger individuals initiated and won most of the competitions, which suggests size-based social hierarchy of P. leniusculus. This is further supported by the fact that the length and weight gain of smaller animals increased after size grading, maybe because of a better access to the food resource due to diminished social pressure. However, the high dominance index was not based on size under conditions of limited size variation, e.g. those characteristic of restocked natural populations and aquaculture, indicating the important role of behaviour on social hierarchy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerosols impact the planet and our daily lives through various effects, perhaps most notably those related to their climatic and health-related consequences. While there are several primary particle sources, secondary new particle formation from precursor vapors is also known to be a frequent, global phenomenon. Nevertheless, the formation mechanism of new particles, as well as the vapors participating in the process, remain a mystery. This thesis consists of studies on new particle formation specifically from the point of view of numerical modeling. A dependence of formation rate of 3 nm particles on the sulphuric acid concentration to the power of 1-2 has been observed. This suggests nucleation mechanism to be of first or second order with respect to the sulphuric acid concentration, in other words the mechanisms based on activation or kinetic collision of clusters. However, model studies have had difficulties in replicating the small exponents observed in nature. The work done in this thesis indicates that the exponents may be lowered by the participation of a co-condensing (and potentially nucleating) low-volatility organic vapor, or by increasing the assumed size of the critical clusters. On the other hand, the presented new and more accurate method for determining the exponent indicates high diurnal variability. Additionally, these studies included several semi-empirical nucleation rate parameterizations as well as a detailed investigation of the analysis used to determine the apparent particle formation rate. Due to their high proportion of the earth's surface area, oceans could potentially prove to be climatically significant sources of secondary particles. In the lack of marine observation data, new particle formation events in a coastal region were parameterized and studied. Since the formation mechanism is believed to be similar, the new parameterization was applied in a marine scenario. The work showed that marine CCN production is feasible in the presence of additional vapors contributing to particle growth. Finally, a new method to estimate concentrations of condensing organics was developed. The algorithm utilizes a Markov chain Monte Carlo method to determine the required combination of vapor concentrations by comparing a measured particle size distribution with one from an aerosol dynamics process model. The evaluation indicated excellent agreement against model data, and initial results with field data appear sound as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Competition among weak intermolecular interactions can lead to polymorphism, the appearance of various crystalline forms of a substance with comparable cohesive energies. The crystal structures of 2-fluorophenylacetylene (2FPA) and 3-fluorophenylacetylene (3FPA), both of which are liquids at ambient conditions, have been determined by in situ cryocrystallization. Both compounds exhibit dimorphs, with one of the forms observed in common, P2(1), Z = 2 and the other form being Pna2(1), Z = 4 for 2FPA and P2(1)/c, Z = 12 for 3FPA. Variations in the crystal structures of the dimorphs of each of these compounds arise from subtle differences in the way in which weak intermolecular interactions such as C-H center dot center dot center dot pi and C-H center dot center dot center dot F are manifested. The interactions involving ``organic'' fluorine, are entirely different from those in the known structure of 4-fluorophenylacetylene (4FPA), space group P2(1)/c, Z = 4. The commonalities and differences in these polymorphs of 2FPA and 3FPA have been analyzed in terms of supramolecular synthons and extended long-range synthon aufbau module (LSAM) patterns. These structures are compared with the three polymorphs of phenylacetylene, in terms of the T-shaped C-H center dot center dot center dot pi interaction, a feature common to all these structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we estimate the trends and variability in Advanced Very High Resolution Radiometer (AVHRR)-derived terrestrial net primary productivity (NPP) over India for the period 1982-2006. We find an increasing trend of 3.9% per decade (r = 0.78, R-2 = 0.61) during the analysis period. A multivariate linear regression of NPP with temperature, precipitation, atmospheric CO2 concentration, soil water and surface solar radiation (r = 0.80, R-2 = 0.65) indicates that the increasing trend is partly driven by increasing atmospheric CO2 concentration and the consequent CO2 fertilization of the ecosystems. However, human interventions may have also played a key role in the NPP increase: non-forest NPP growth is largely driven by increases in irrigated area and fertilizer use, while forest NPP is influenced by plantation and forest conservation programs. A similar multivariate regression of interannual NPP anomalies with temperature, precipitation, soil water, solar radiation and CO2 anomalies suggests that the interannual variability in NPP is primarily driven by precipitation and temperature variability. Mean seasonal NPP is largest during post-monsoon and lowest during the pre-monsoon period, thereby indicating the importance of soil moisture for vegetation productivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotopes from a U/Th dated aragonite stalagmite from the Central Kumaun Himalaya provide evidence of variation in climatic conditions in the last similar to 1800 years. The delta O-18 and delta C-13 values vary from -4.3 parts per thousand to -7.6 parts per thousand and -3.4 parts per thousand to -9.1 parts per thousand respectively, although the stalagmite was not grown in isotopic equilibrium with cave drip water, a clear palaeoclimatic signal in stalagmite delta O-18 values is evident based on the regional climate data. The stalagmite showed a rapid growth rate during 830-910 AD, most likely the lower part of Medieval Warm Period (MWP), and 1600-1640 AD, the middle part of Little Ice Age (LIA). Two distinct phases of reduced precipitation are marked by a 2 parts per thousand shift in 8180 values towards the end of MWP (similar to 1080-1160 AD) and after its termination from similar to 1210 to 1440 AD. The LIA (similar to 1440-1880 AD) is represented by sub-tropical climate similar to modern conditions, whereas the post-LIA was comparatively drier. The Inter Tropical Convergence Zone (ITCZ) was located over the cave location during wetter/warmer conditions. When it shifted southward, precipitation over the study area decreased. A prominent drop in delta O-18 and delta C-13 values during the post-LIA period may also have been additionally influenced by anthropogenic activity in the area. (C) 2013 Elsevier Ltd and INQUA. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accuracy in tree woody growth estimates is important to global carbon budget estimation and climate-change science. Tree growth in permanent sampling plots (PSPs) is commonly estimated by measuring stem diameter changes, but this method is susceptible to bias resulting from water-induced reversible stem shrinkage. In the absence of bias correction, temporal variability in growth is likely to be overestimated and incorrectly attributed to fluctuations in resource availability, especially in forests with high seasonal and inter-annual variability in water. We propose and test a novel approach for estimating and correcting this bias at the community level. In a 50-ha PSP from a seasonally dry tropical forest in southern India, where tape measurements have been taken every four years from 1988 to 2012, for nine trees we estimated bias due to reversible stem shrinkage as the difference between woody growth measured using tree rings and that estimated from tape. We tested if the bias estimated from these trees could be used as a proxy to correct bias in tape-based growth estimates at the PSP scale. We observed significant shrinkage-related bias in the growth estimates of the nine trees in some censuses. This bias was strongly linearly related to tape-based growth estimates at the level of the PSP, and could be used as a proxy. After bias was corrected, the temporal variance in growth rates of the PSP decreased, while the effect of exceptionally dry or wet periods was retained, indicating that at least a part of the temporal variability arose from reversible shrinkage-related bias. We also suggest that the efficacy of the bias correction could be improved by measuring the proxy on trees that belong to different size classes and census timing, but not necessarily to different species. Our approach allows for reanalysis - and possible reinterpretation of temporal trends in tree growth, above ground biomass change, or carbon fluxes in forests, and their relationships with resource availability in the context of climate change. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mode I fracture toughness, K-Ic, of ductile bulk metallic glasses (BMGs) exhibits a high degree of specimen-to-specimen variability. By conducting fracture experiments in modes I and II, we demonstrate that the observed high variability in mode I, vis-a-vis mode II, is a result of highly variable propensity for the conversion of shear bands into cracks in mode I whereas in mode II, crack growth direction is fixed. Thus, the measured variability in K-Ic is intrinsic to the nature of BMGs. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

English: Data obtained from tagging experiments initiated during 1953-1958 and 1969-1981 for skipjack tuna from the coastal eastern Pacific Ocean (EPO) are reanalyzed, using the Schnute generalized growth model. The objective is to provide information that can be used to generate a growth transition matrix for use in a length-structured population dynamics model. The analysis includes statistical approaches to include individual variability in growth as a function of length at release and time at liberty, measurement error, and transcription error. The tagging data are divided into northern and southern regions, and the results suggest that growth rates differ between the two regions. The Schnute model provides a significantly better fit to the data than the von Bertalanffy model, a sub-model of the Schnute model, for the northern region, but not for the southern region. Individual variation in growth is best described as a function of time at liberty and as a function of growth increment for the northern and southern regions, respectively. Measurement error is a significant part of the total variation, but the results suggest that there is no bias caused by the measurement error. Additional information, particularly for small and large fish, is needed to produce an adequate growth transition matrix that can be used in a length-structured population dynamics model for skipjack tuna in the EPO. Spanish: Los datos obtenidos de los experimentos de marcado iniciados durante los períodos de 1953- 1958 y de 1969-1981 para el atún barrilete en las costas del Océano Pacífico Oriental (OPO) fueron analizados nuevamente, utilizando el modelo de crecimiento generalizado de Schnute. El objetivo es brindar información que sea útil para producir una matriz sobre la tran-sición de crecimiento que pueda utilizarse en un modelo de dinámica poblacional estructurado por talla. El análisis usa enfoques estadísticos para poder incluir la variabilidad individual del crecimiento como función de la talla de liberación y tiempo en libertad, el error de medición, y el error de transcripción. Los datos de marcado son divididos en regiones norte y sur, y los resultados sugieren que las tasas de crecimiento en las dos regiones son diferentes. En la región norte, pero no en la región sur, el modelo de Schnute se ajusta significativamente mejor a los datos que el modelo von Bertalanffy, un sub-modelo del modelo de Schnute. La mejor descripción de la variación individual en el crecimiento es como una función del tiempo en libertad y como una función del incremento de crecimiento para las regiones norte y sur, respectivamente. El error de medición es una parte significativa de la variación total, pero los resultados sugieren que no existe un sesgo causado por el error de medición. Se necesita información adicional, particularmente para peces pequeños y grandes, para poder producir una matriz de transición de crecimiento adecuada que pueda utilizarse en el modelo de dinámica poblacional estructurado por tallas para el atún barrilete en el OPO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study documents validation of vertebral band-pair formation in spotted gully shark (Triakis megalopterus) with the use of fluorochrome injection and tagging of captive and wild sharks over a 21-year period. Growth and mortality rates of T. megalopterus were also estimated and a demographic analysis of the species was conducted. Of the 23 OTC (oxytetracycline) -marked vertebrae examined (12 from captive and 11 from wild sharks), seven vertebrae (three from captive and four from wild sharks) exhibited chelation of the OTC and fluoresced under ultraviolet light. It was concluded that a single opaque and translucent band pair was deposited annually up to at least 25 years of age, the maximum age recorded. Reader precision was assessed by using an index of average percent error calculated at 5%. No significant differences were found between male and female growth patterns (P>0.05), and von Bertalanffy growth model parameters for combined sexes were estimated to be L∞=1711.07 mm TL, k=0.11/yr and t0=–2.43 yr (n=86). Natural mortality was estimated at 0.17/yr. Age at maturity was estimated at 11 years for males and 15 years for females. Results of the demographic analysis showed that the population, in the absence of fishing mortality, was stable and not significantly different from zero and particularly sensitive to overfishing. At the current age at first capture and natural mortality rate, the fishing mortality rate required to result in negative population growth was low at F>0.004/ yr. Elasticity analysis revealed that juvenile survival was the principal factor in explaining variability in population growth rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new description of growth in blacklip abalone (Haliotis rubra) with the use of an inverse-logistic model is introduced. The inverse-logistic model avoids the disadvantageous assumptions of either rapid or slow growth for small and juvenile individuals implied by the von Bertalanffy and Gompertz growth models, respectively, and allows for indeterminate growth where necessary. An inverse-logistic model was used to estimate the expected mean growth increment for different black-lip abalone populations around southern Tasmania, Australia. Estimates of the time needed for abalone to grow from settlement until recruitment (at 138 mm shell length) into the fishery varied from eight to nine years. The variability of the residuals about the predicted mean growth increments was described with either a second inverse-logistic relationship (standard deviation vs. initial length) or by a power relationship (standard deviation vs. predicted growth increment). The inverse-logistic model can describe linear growth of small and juvenile abalone (as observed in Tasmania), as well as a spectrum of growth possibilities, from determinate to indeterminate growth (a spectrum that would lead to a spread of maximum lengths).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract—Fisheries often target individuals based on size. Size-selective fishing can create selection differentials on life-history traits and, when those traits have a genetic basis, may cause evolution. The evolution of life history traits affects potential yield and sustainability of fishing, and it is therefore an issue for fishery management. Yet fishery managers usually disregard the possibility of evolution, because little guidance is available to predict evolutionary consequences of management strategies. We attempt to provide some generic guidance. We develop an individual-based model of a population with overlapping generations and continuous reproduction. We simulate model populations under size-selective fishing to generate and quantify selection differentials on growth. The analysis comprises a variety of common life-history and fishery characteristics: variability in growth, correlation between von Bertalanffy growth parameters (K and L∞), maturity rate, natural mortality rate (M), M/K ratio, duration of spawning season, fishing mortality rate (F), maximum size limit, slope of selectivity curve, age at 50% selectivity, and duration of fishing season. We found that each characteristic affected the magnitude of selection differentials. The most vulnerable stocks were those with a short spawning or fishing season. Under almost all life-history and fishery characteristics examined, selection differentials created by realistic fishing mortality rates are considerable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this work is to examine the properties of recording mechanisms which are common to continuously recording high-resolution natural systems in which climatic signals are imprinted and preserved as proxy records. These systems produce seasonal structures as an indirect response to climatic variability over the annual cycle. We compare the proxy records from four different high-resolution systems: the Quelccaya ice cap of the Peruvian Andes; composite tree ring growth from southern California and the southwestern United States; and the marine varve sedimentation systems in the Santa Barbara basin (off California, United States) and in the Gulf of California, Mexico. An important focus of this work is to indicate how the interannual climatic signal is recorded in a variety of different natural systems with vastly different recording mechanisms and widely separated in space. These high-resolution records are the products of natural processes which should be comparable, to some degree, to human-engineered systems developed to transmit and record physical quantities. We therefore present a simple analogy of a data recording system as a heuristic model to provide some unifying concepts with which we may better understand the formation of the records. This analogy assumes special significance when we consider that natural proxy records are the principal means to extend our knowledge of climatic variability into the past, beyond the limits of instrumentally recorded data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Karenia brevis is the dominant toxic red tide algal species in the Gulf of Mexico. It produces potent neurotoxins (brevetoxins [PbTxs]), which negatively impact human and animal health, local economies, and ecosystem function. Field measurements have shown that cellular brevetoxin contents vary from 1–68 pg/cell but the source of this variability is uncertain. Increases in cellular toxicity caused by nutrient-limitation and inter-strain differences have been observed in many algal species. This study examined the effect of P-limitation of growth rate on cellular toxin concentrations in five Karenia brevis strains from different geographic locations. Phosphorous was selected because of evidence for regional P-limitation of algal growth in the Gulf of Mexico. Depending on the isolate, P-limited cells had 2.3- to 7.3-fold higher PbTx per cell than P-replete cells. The percent of cellular carbon associated with brevetoxins (%C-PbTx) was ~ 0.7 to 2.1% in P-replete cells, but increased to 1.6–5% under P-limitation. Because PbTxs are potent anti-grazing compounds, this increased investment in PbTxs should enhance cellular survival during periods of nutrient-limited growth. The %C-PbTx was inversely related to the specific growth rate in both the nutrient-replete and P-limited cultures of all strains. This inverse relationship is consistent with an evolutionary tradeoff between carbon investment in PbTxs and other grazing defenses, and C investment in growth and reproduction. In aquatic environments where nutrient supply and grazing pressure often vary on different temporal and spatial scales, this tradeoff would be selectively advantageous as it would result in increased net population growth rates. The variation in PbTx/cell values observed in this study can account for the range of values observed in the field, including the highest values, which are not observed under N-limitation. These results suggest P-limitation is an important factor regulating cellular toxicity and adverse impacts during at least some K. brevis blooms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last 50 years, much of the variability in ocean climate and herring recruitment has occurred at two dominant periods centered around 5 and 16 years. Herring growth has also exhibited a dominant 5- and 18-year periodicity. A recent analysis of a number of relevant time series suggests that interannual variations in oceanic conditions off the west coast of Vancouver Island affect survival of herring and their principal predator, Pacific hake, which also exhibits a marked 16-year oscillation in abundance. Thus the dynamics of the herring stock are modulated by a combination of climate and predator forcing. Much of the interannual variation in herring growth is centered around the 5-year (moderate ENSO period) and 16-year (strong ENSO period) ocean climate oscillations and the 16-year recruitment oscillation.