73 resultados para gravimetry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Bases Gerais da Cirurgia - FMB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The N6 Plateau presents an iron-ore occurence in Carajás Mineral Province, standing near to actually operating deposits. Geological mapping in 1:10,000 scale and integration of geochemical, geophysical, petrography and drilling turns possible interpretation of his geological evolution. The mapped area has lithotypes from Archean Grão Pará Group, comprising very lowgrade metamorphic basic rocks and iron formation and an Proterozoic sedimentary association of conglomeratic sandstones called as Caninana Unity. The structural geology in given by a regional scale homoclinal, where the Grão Pará Group strata dips towards SW, as a part of the Northern Limb of the Carajás Fold. Subsequent deformation associated to the installation of the Carajás Shear Zone presents as E-W fold axis. Geochemical evidence permits to consider de Parauapebas Formation as the rocks which has been hydrothermally-altered to outsourcing fluids responsible to deposition of iron formations in the oceanic system, including different signatures which can be interpreted as possible sub-embayments in the Carajás Basin. The iron ore in the area occurs in subsurface as very fine friable hematite generated by supergenous enrichment of the iron formation. The conceived geologic model differs from the current academic proposal on the fact that hydrothermal alteration has been involved on the jaspelite enrichment. Metamorphism on the Parauapebas Formation presents paragenesis considered as ocean-floor metamorphism which precedes de deformation insofar as the rocks show no tectonic fabric referring to shallow crust evolution. Geophysical methods such as magnetometry and gravimetry presents excellent results for structural interpretation in uneven exposed terrain

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymers from natural sources are particularly useful as biomaterials for medical devices applications. In this study, the results of characterization of a gelatin network electrolyte doped with europium triflate (Eu(CF3SO3)(3)) are described. The unusual electronic properties of the trivalent lanthanide ions make them well suited as luminescent reporter groups, with many applications in biotechnology. Samples of solvent-free electrolytes were prepared with a range of guest salt concentration. Materials based on Eu(CF3SO3)(3) were obtained as mechanically robust, flexible, transparent, and completely amorphous films. Samples were characterized by thermal analysis (thermo-gravimetry analysis (TGA) and differential scanning calorimetry (DSC), electrochemical stability, scanning electronmicroscopy (SEM), and photoluminescence spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In urban areas of Brazil, vehicle emissions are the principal source of fine particulate matter (PM2.5). The World Health Organization air quality guidelines state that the annual mean concentration of PM2.5 should be below 10 mu g m(-3). In a collaboration of Brazilian institutions, coordinated by the University of Sao Paulo School of Medicine and conducted from June 2007 to August 2008, PM2.5 mass was monitored at sites with high traffic volumes in six Brazilian state capitals. We employed gravimetry to determine PM2.5 mass concentrations, reflectance to quantify black carbon concentrations, X-ray fluorescence to characterize elemental composition, and ion chromatography to determine the composition and concentrations of anions and cations. Mean PM2.5 concentrations and proportions of black carbon (BC) in the cities of Sao Paulo, Rio de Janeiro, Belo Horizonte, Curitiba, Recife, and Porto Alegre were 28.1 +/- 13.6 mu g m(-3) (38% BC), 17.2 +/- 11.2 mu g m(-3) (20% BC), 14.7 +/- 7.7 mu g m(-3) (31% BC), 14.4 +/- 9.5 mu g m(-3) (30% BC), 7.3 +/- 3.1 mu g m(-3) (26% BC), and 13.4 +/- 9.9 mu g m(-3) (26% BC), respectively. Sulfur and minerals (Al, Si, Ca, and Fe), derived from fuel combustion and soil resuspension, respectively, were the principal elements of the PM2.5 mass. We discuss the long-term health effects for each metropolitan region in terms of excess mortality risk, which translates to greater health care expenditures. This information could prove useful to decision makers at local environmental agencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Brazil, the principal source of air pollution is the combustion of fuels (ethanol, gasohol, and diesel). In this study, we quantify the contributions that vehicle emissions make to the urban fine particulate matter (PM2.5) mass in six state capitals in Brazil, collecting data for use in a larger project evaluating the impact of air pollution on human health. From winter 2007 to winter 2008, we collected 24-h PM2.5 samples, employing gravimetry to determine PM2.5 mass concentrations; reflectance to quantify black carbon concentrations; X-ray fluorescence to characterize elemental composition; and ion chromatography to determine the composition and concentrations of anions and cations. Mean PM2.5 concentrations in the cities of Sao Paulo, Rio de Janeiro, Belo Horizonte, Curitiba, Porto Alegre, and Recife were 28, 17.2, 14.7, 14.4, 13.4, and 7.3 mu g/m(3), respectively. In Sao Paulo and Rio de Janeiro, black carbon explained approximately 30% of the PM2.5 mass. We used receptor models to identify distinct source-related PM2.5 fractions and correlate those fractions with daily mortality rates. Using specific rotation factor analysis, we identified the following principal contributing factors: soil and crustal material; vehicle emissions and biomass burning (black carbon factor); and fuel oil combustion in industries (sulfur factor). In all six cities, vehicle emissions explained at least 40% of the PM2.5 mass. Elemental composition determination with receptor modeling proved an adequate strategy to identify air pollution sources and to evaluate their short- and long-term effects on human health. Our data could inform decisions regarding environmental policies vis-a-vis health care costs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’imballaggio alimentare si può definire come un sistema coordinato per disporre i beni per il trasporto, la distribuzione, la conservazione, la vendita e l’utilizzo. Uno dei materiali maggiormente impiegati, nell’industria alimentare, per la produzione di imballaggi sono le materie plastiche. Esse sono sostanze organiche derivanti da petrolio greggio, sono composti solidi allo stato finito, ma possono essere modellate allo stato fluido. Un imballaggio alimentare deve svolgere determinate funzioni tra cui: - contenimento del prodotto - protezione del prodotto da agenti esterni - logistica - comunicativa - funzionale - ecologica L'ultimo punto sopracitato è il principale problema delle materie plastiche derivanti dal petrolio greggio. Questi materiali sono difficilmente riciclabili perché spesso un imballaggio è composto da più materiali stratificati o perché si trova a diretto contatto con gli alimenti. Inoltre questi materiali hanno un lungo tempo di degradazione (da 100 a 1000 anni) che ne rendono difficile e costoso lo smaltimento. Per questo nell’ultimo decennio è cominciata la ricerca di un materiale plastico, flessibile alle esigenze industriali e nel contempo biodegradabile. Una prima idea è stata quella di “imitare la natura” cercando di replicare macromolecole già esistenti (derivate da amido e zuccheri) per ottenere una sostanza plastico-simile utilizzabile per gli stessi scopi, ma biodegradabile in circa sei mesi. Queste bioplastiche non hanno preso piede per l’alto costo di produzione e perché risulta impossibile riconvertire impianti di produzione in tutto il mondo in tempi brevi. Una seconda corrente di pensiero ha indirizzato i propri sforzi verso l’utilizzo di speciali additivi aggiunti in minima misura (1%) ai classici materiali plastici e che ne permettono la biodegradazione in un tempo inferiore ai tre anni. Un esempio di questo tipo di additivi è l’ECM Masterbatch Pellets che è un copolimero di EVA (etilene vinil acetato) che aggiunto alle plastiche tradizionali rende il prodotto finale completamente biodegradabile pur mantenendo le proprie caratteristiche. Scopo di questo lavoro di tesi è stato determinare le modificazioni di alcuni parametri qualitativi di nettarine di Romagna(cv.-Alexa®) confezionate-con-film-plastici-tradizionali-e-innovativi. I campioni di nettarine sono stati confezionati in cestini in plastica da 1 kg (sigillati con un film flow-pack macroforato) di tipo tradizionale in polipropilene (campione denominato TRA) o vaschette in polipropilene additivato (campione denominato BIO) e conservati a 4°C e UR 90-95% per 7 giorni per simulare un trasporto refrigerato successivamente i campioni sono stati posti in una camera a 20°C e U.R. 50% per 4 giorni al fine di simulare una conservazione al punto vendita. Al tempo 0 e dopo 4, 7, 9 e 11 giorni sono state effettuate le seguenti analisi: - coefficiente di respirazione è stato misurata la quantità di CO2 prodotta - indice di maturazione espresso come rapporto tra contenuto in solidi solubili e l’acidità titolabile - analisi di immagine computerizzata - consistenza della polpa del frutto è stata misurata attraverso un dinamometro Texture Analyser - contenuto in solidi totali ottenuto mediante gravimetria essiccando i campioni in stufa sottovuoto - caratteristiche sensoriali (Test Accettabilità) Conclusioni In base ai risultati ottenuti i due campioni non hanno fatto registrare dei punteggi significativamente differenti durante tutta la conservazione, specialmente per quanto riguarda i punteggi sensoriali, quindi si conclude che le vaschette biodegradabili additivate non influenzano la conservazione delle nettarine durante la commercializzazione del prodotto limitatamente ai parametri analizzati. Si ritiene opportuno verificare se il processo di degradazione del polimero additivato si inneschi già durante la commercializzazione della frutta e soprattutto verificare se durante tale processo vengano rilasciati dei gas che possono accelerare la maturazione dei frutti (p.e. etilene), in quanto questo spiegherebbe il maggiore tasso di respirazione e la più elevata velocità di maturazione dei frutti conservati in tali vaschette. Alimentary packaging may be defined as a coordinate system to dispose goods for transport, distribution, storage, sale and use. Among materials most used in the alimentary industry, for the production of packaging there are plastics materials. They are organic substances deriving from crude oil, solid compounds in the ended state, but can be moulded in the fluid state. Alimentary packaging has to develop determinated functions such as: - Product conteniment - Product protection from fieleders agents - logistic - communicative - functional - ecologic This last term is the main problem of plastic materials deriving from crude oil. These materials are hardly recyclable because a packaging is often composed by more stratified materials or because it is in direct contact with aliments. Beside these materials have a long degradation time(from 100 to 1000 years) that make disposal difficult and expensive. For this reason in the last decade the research for a new plastic material is begin, to make industrial demands more flexible and, at the same time, to make this material biodegradable: At first, the idea to “imitate the nature” has been thought, trying to reply macromolecules already existents (derived from amid and sugars) to obtain a similar-plastic substance that can be used for the same purposes, but it has to be biodegradable in about six months. These bioplastics haven’t more success bacause of the high production cost and because reconvert production facilities of all over the wolrd results impossible in short times. At second, the idea to use specials addictives has been thought. These addictives has been added in minim measure (1%) to classics plastics materials and that allow the biodegradation in a period of time under three years. An example of this kind of addictives is ECM Masterbatch Pellets which is a coplymer of EVA (Ethylene vinyl acetate) that, once it is added to tradizional plastics, make final product completely biodegradable however maintaining their own attributes. The objective of this thesis work has been to determinate modifications of some Romagna’s Nectarines’ (cv. Alexa®) qualitatives parameters which have been packaged-with traditional and innovative-plastic film. Nectarines’ samples have been packaged in plastic cages of 1 kg (sealed with a macro-drilled flow-pack film) of traditional type in polypropylene (sample named TRA) or trays in polypropylene with addictives (sample named BIO) and conservated at 4°C and UR 90-95% for 7 days to simulate a refrigerated transport. After that, samples have been put in a camera at 20°C and U.R. 50% for 4 days to simulate the conservation in the market point. At the time 0 and after 4, 7, 9 and 11 days have been done the following analaysis: - Respiration coefficient wherewith the amount CO2 producted has been misurated - Maturation index which is expressed as the ratio between solid soluble content and the titratable acidity - Analysis of computing images - Consistence of pulp of the fruit that has been measured through Texture Analyser Dynanometer - Content in total solids gotten throught gravimetry by the drying of samples in vacuum incubator - Sensorial characteristic (Panel Test) Consequences From the gotten results, the two samples have registrated no significative different scores during all the conservation, expecially about the sensorial scores, so it’s possible to conclude that addictived biodegradable trays don’t influence the Nectarines’ conservation during the commercialization of the product qualifiedly to analized parameters. It’s advised to verify if the degradation process of the addicted polymer may begin already during the commercialization of the fruit and in particular to verify if during this process some gases could be released which can accelerate the maturation of fruits (p.e. etylene), because all this will explain the great respiration rate and the high speed of the maturation of fruits conservated in these trays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To track dehydration behavior of cavansite, Ca(VO)(Si4O10)·4H2O space group Pnma, a = 9.6329(2), b = 13.6606(2), c = 9.7949(2) Å, V = 1288.92(4) Å3 single-crystal X-ray diffraction data on a crystal from Wagholi quarry, Poona district (India) were collected up to 400 °C in steps of 25 °C up to 250 °C and in steps of 50 °C between 250 and 400 °C. The structure of cavansite is characterized by layers of silicate tetrahedra connected by V4+O5 square pyramids. This way a porous framework structure is formed with Ca and H2O as extraframework occupants. At room temperature, the hydrogen bond system was analyzed. Ca is eightfold coordinated by four bonds to O of the framework structure and four bonds to H2O molecules. H2O linked to Ca is hydrogen bonded to the framework and also to adjacent H2O molecules. The dehydration in cavansite proceeds in four steps.At 75 °C, H2O at O9 was completely expelled leading to 3 H2O pfu with only minor impact on framework distortion and contraction V = 1282.73(3) Å3. The Ca coordination declined from originally eightfold to sevenfold and H2O at O7 displayed positional disorder.At 175 °C, the split O7 sites approached the former O9 position. In addition, the sum of the three split positions O7, O7a, and O7b decreased to 50% occupancy yielding 2 H2O pfu accompanied by a strong decrease in volume V = 1206.89(8) Å3. The Ca coordination was further reduced from sevenfold to sixfold.At 350 °C, H2O at O8 was released leading to a formula with 1 H2O pfu causing additional structural contraction (V = 1156(11) Å3). At this temperature, Ca adopted fivefold coordination and O7 rearranged to disordered positions closer to the original O9 H2O site.At 400 °C, cavansite lost crystallinity but the VO2+ characteristic blue color was preserved. Stepwise removal of water is discussed on the basis of literature data reporting differential thermal analyses, differential thermo-gravimetry experiments and temperature dependent IR spectra in the range of OH stretching vibrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Designs for deep geological respositories of nuclear waste include bentonite as a hydraulic and chemisorption buffer material to protect the biosphere from leakage of radionuclides. Bentonite is chosen because it is a cheap, naturally occurring material with the required properties. It consists essentially of montmorillonite, a swelling clay mineral. Upon contact with groundwater such clays can seal the repository by incorporating water in the interlayers of their crystalline structure. The intercalated water exhibits significantly different properties to bulk water in the surrounding interparticle pores, such as lower diffusion coefficients (González Sánchez et. al. 2008). This doctoral thesis presents water distribution and diffusion behavior on various time and space scales in montmorillonite. Experimental results are presented for Na- and Cs-montmorillonite samples with a range of bulk dry densities (0.8 to 1.7 g/cm3). The experimental methods employed were neutron scattering (backscattering, diffraction, time-of-flight), adsorption measurements (water, nitrogen) and tracer-through diffusion. For the tracer experiments the samples were fully saturated via the liquid phase under volume-constrained conditions. In contrast, for the neutron scattering experiments, the samples were hydrated via the vapor phase and subsequently compacted, leaving a significant fraction of interparticle pores unfilled with water. Owing to these differences in saturation, the water contents of the samples for neutron scattering were characterized by gravimetry whereas those for the tracer experiments were obtained from the bulk dry density. The amount of surface water in interlayer pores could be successfully discriminated from the amount of bulk-like water in interparticle pores in Na- and Csmontmorillonite using neutron spectroscopy. For the first time in the literature, the distribution of water between these two pore environments was deciphered as a function of gravimetric water content. The amount was compared to a geometrical estimation of the amount of interlayer and interparticle water determined by neutron diffraction and adsorption measurements. The relative abundances of the 1 to 4 molecular water layers in the interlayer were determined from the area ratios of the (001)-diffraction peaks. Depending on the characterization method, different fractions of surface water and interlayer water were obtained. Only surface and interlayer water exists in amontmorillonite with water contents up to 0.18 g/g according to spectroscopic measurements and up to 0.32 g/g according to geometrical estimations, respectively. At higher water contents, bulk-like and interparticle water also exists. The amounts increase monotonically, but not linearly, from zero to 0.33 g/g for bulk-like water and to 0.43 g/g for interparticle water. It was found that water most likely redistributes between the surface and interlayer sites during the spectroscopic measurements and therefore the reported fraction is relevant only below about -10 ºC (Anderson, 1967). The redistribution effect can explain the discrepancy in fractions between the methods. In a novel approach the fractions of water in different pore environments were treated as a fixed parameter to derive local diffusion coefficients for water from quasielastic neutron scattering data, in particular for samples with high water contents. Local diffusion coefficients were obtained for the 1 to 4 molecular water layers in the interlayer of 0.5·10–9, 0.9·10–9, 1.5·10–9 and 1.4·10–9 m²/s, respectively, taking account of the different water fractions (molecular water layer, bulk-like water). The diffusive transport of 22Na and HTO through Na-montmorillonite was measured on the laboratory experimental scale (i.e. cm, days) by tracer through-diffusion experiments. We confirmed that diffusion of HTO is independent of the ionic strength of the external solution in contact with the clay sample but dependent on the bulk dry density. In contrast, the diffusion of 22Na was found to depend on both the ionic strength of the pore solution and on the bulk dry density. The ratio of the pore and surface diffusion could be experimentally determined for 22Na from the dependence of the diffusion coefficient on the ionic strength. Activation energies were derived from the temperaturedependent diffusion coefficients via the Arrhenius relation. In samples with high bulk dry density the activation energies are slightly higher than those of bulk water whereas in low density samples they are lower. The activation energies as a function of ionic strengths of the pore solutions are similar for 22Na and HTO. The facts that (i) the slope of the logarithmic effective diffusion coefficients as a function of the logarithmic ionic strength is less than unity for low bulk dry densities and (ii) two water populations can be observed for high gravimetric water contents (low bulk dry densities) support the interlayer and interparticle porosity model proposed by Glaus et al. (2007), Bourg et al. (2006, 2007) and Gimmi and Kosakowski (2011).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geological site characterisation programmes typically rely on drill cores for direct information on subsurface rocks. However, porosity, transport properties and porewater composition measured on drill cores can deviate from in-situ values due to two main artefacts caused by drilling and sample recovery: (1) mechanical disruption that increases porosity and (2) contamination of the porewater by drilling fluid. We investigated the effect and magnitude of these perturbations on large drill core samples (12–20 cm long, 5 cmdiameter) of high-grade, granitic gneisses obtained from 350 to 600 m depth in a borehole on Olkiluoto Island (SW Finland). The drilling fluid was traced with sodium–iodide. By combining out-diffusion experiments, gravimetry, UV-microscopy and iodide mass balance calculations, we successfully quantified the magnitudes of the artefacts: 2–6% increase in porosity relative to the bulk connected porosity and 0.9 to 8.9 vol.% contamination by drilling fluid. The spatial distribution of the drilling-induced perturbations was revealed by numerical simulations of 2D diffusion matched to the experimental data. This showed that the rims of the samples have a mechanically disrupted zone 0.04 to 0.22 cm wide, characterised by faster transport properties compared to the undisturbed centre (1.8 to 7.7 times higher pore diffusion coefficient). Chemical contamination was shown to affect an even wider zone in all samples, ranging from 0.15 to 0.60 cm, inwhich iodide enrichmentwas up to 180 mg/kgwater, compared to 0.5 mg/kgwater in the uncontaminated centre. For all samples in the present case study, it turned out that the magnitude of the artefacts caused by drilling and sample recovery is so small that no correction is required for their effects. Therefore, the standard laboratory measurements of porosity, transport properties and porewater composition can be taken as valid in-situ estimates. However, it is clear that the magnitudes strongly depend on site- and drilling-specific factors and therefore our results cannot be transferred simply to other locations. We recommend the approach presented in this study as a route to obtain reliable values in future drilling campaigns aimed at characterising in-situ bedrock properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We re-evaluate the Greenland mass balance for the recent period using low-pass Independent Component Analysis (ICA) post-processing of the Level-2 GRACE data (2002-2010) from different official providers (UTCSR, JPL, GFZ) and confirm the present important ice mass loss in the range of -70 and -90 Gt/y of this ice sheet, due to negative contributions of the glaciers on the east coast. We highlight the high interannual variability of mass variations of the Greenland Ice Sheet (GrIS), especially the recent deceleration of ice loss in 2009-2010, once seasonal cycles are robustly removed by Seasonal Trend Loess (STL) decomposition. Interannual variability leads to varying trend estimates depending on the considered time span. Correction of post-glacial rebound effects on ice mass trend estimates represents no more than 8 Gt/y over the whole ice sheet. We also investigate possible climatic causes that can explain these ice mass interannual variations, as strong correlations between GRACE-based mass balance and atmosphere/ocean parallels are established: (1) changes in snow accumulation, and (2) the influence of inputs of warm ocean water that periodically accelerate the calving of glaciers in coastal regions and, feed-back effects of coastal water cooling by fresh currents from glaciers melting. These results suggest that the Greenland mass balance is driven by coastal sea surface temperature at time scales shorter than accumulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distribution patterns, petrography, whole-rock and mineral chemistry, and shape and fabric data are described for the most representative basement lithologies occurring as clasts (granule to bolder grain-size class) from the 625 m deep CRP-2/2A drillcore. A major change in the distribution pattern of the clast types occurs at c. 310 mbsf., with granitoid-dominated clasts above and mainly dolerite clasts below; moreover, compositional and modal data suggest a further division into seven main detrital assemblages or petrofacies. In spite of this variability, most granitoid pebbles consist of either pink or grey biotite±hornblende monzogranites. Other less common and ubiquitous lithologies include biotite syenogranite, biotite-hornblende granodiorite, tonalite, monzogranitic porphyries (very common below 310 mbsf), microgranite, and subordinately, monzogabbro, Ca-silicate rocks, biotite-clinozoisite schist and biotite orthogneiss (restricted to the pre-Pliocene strata). The ubiquitous occurrence of biotite±hornblende monzogranite pebbles in both the Quaternary-Pliocene and Miocene-Oligocene sections, apparently reflects the dominance of these lithologies in the onshore basement, and particularly in the Cambro-Ordovician Granite Harbour Igneous Complex which forms the most extensive outcrop in southern Victoria Land. The petrographical features of the other CRP-2/2A pebble lithologies are consistent with a supply dominantly from areas of the Transantarctic Mountains facing the CRP-2/2A site, and they thus provide further evidence of a local provenance for the supply of basement clasts to the CRP-2/2A sedimentary strata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS), Very Long Baseline Interferometry (VLBI), Doppler Orbit determination and Radiopositioning Integrated on Satellite (DORIS), satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment (GRACE) to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global change in land water storage and its effect on sea level is estimated over a 7-year time span (August 2002 to July 2009) using space gravimetry data from GRACE. The 33 World largest river basins are considered. We focus on the year-to-year variability and construct a total land water storage time series that we further express in equivalent sea level time series. The short-term trend in total water storage adjusted over this 7-year time span is positive and amounts to 80.6 ± 15.7 km**3/yr (net water storage excess). Most of the positive contribution arises from the Amazon and Siberian basins (Lena and Yenisei), followed by the Zambezi, Orinoco and Ob basins. The largest negative contributions (water deficit) come from the Mississippi, Ganges, Brahmaputra, Aral, Euphrates, Indus and Parana. Expressed in terms of equivalent sea level, total water volume change over 2002-2009 leads to a small negative contribution to sea level of -0.22 ± 0.05 mm/yr. The time series for each basin clearly show that year-to-year variability dominates so that the value estimated in this study cannot be considered as representative of a long-term trend. We also compare the interannual variability of total land water storage (removing the mean trend over the studied time span) with interannual variability in sea level (corrected for thermal expansion). A correlation of ~0.6 is found. Phasing, in particular, is correct. Thus, at least part of the interannual variability of the global mean sea level can be attributed to land water storage fluctuations.