991 resultados para graphics processing unit (GPU)
Resumo:
Máster Universitario en Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI)
Resumo:
The last generation of consumer electronic devices is endowed with Augmented Reality (AR) tools. These tools require moving object detection strategies, which should be fast and efficient, to carry out higher level object analysis tasks. We propose a lightweight spatio-temporal-based non-parametric background-foreground modeling strategy in a General Purpose Graphics Processing Unit (GPGPU), which provides real-time high-quality results in a great variety of scenarios and is suitable for AR applications.
Resumo:
El objetivo de este proyecto es evaluar la mejora de rendimiento que aporta la paralelización de algoritmos de procesamiento de imágenes, para su ejecución en una tarjeta gráfica. Para ello, una vez seleccionados los algoritmos a estudio, fueron desarrollados en lenguaje C++ bajo el paradigma secuencial. A continuación, tomando como base estas implementaciones, se paralelizaron siguiendo las directivas de la tecnología CUDA (Compute Unified Device Architecture) desarrollada por NVIDIA. Posteriormente, se desarrolló un interfaz gráfico de usuario en Visual C#, para una utilización más sencilla de la herramienta. Por último, se midió el rendimiento de cada uno de los algoritmos, en términos de tiempo de ejecución paralela y speedup, mediante el procesamiento de una serie de imágenes de distintos tamaños.---ABSTRACT---The aim of this Project is to evaluate the performance improvement provided by the parallelization of image processing algorithms, which will be executed on a graphics processing unit. In order to do this, once the algorithms to study were selected, each of them was developed in C++ under sequential paradigm. Then, based on these implementations, these algorithms were implemented using the compute unified device architecture (CUDA) programming model provided by NVIDIA. After that, a graphical user interface (GUI) was developed to increase application’s usability. Finally, performance of each algorithm was measured in terms of parallel execution time and speedup by processing a set of images of different sizes.
Resumo:
The focus of this study is development of parallelised version of severely sequential and iterative numerical algorithms based on multi-threaded parallel platform such as a graphics processing unit. This requires design and development of a platform-specific numerical solution that can benefit from the parallel capabilities of the chosen platform. Graphics processing unit was chosen as a parallel platform for design and development of a numerical solution for a specific physical model in non-linear optics. This problem appears in describing ultra-short pulse propagation in bulk transparent media that has recently been subject to several theoretical and numerical studies. The mathematical model describing this phenomenon is a challenging and complex problem and its numerical modeling limited on current modern workstations. Numerical modeling of this problem requires a parallelisation of an essentially serial algorithms and elimination of numerical bottlenecks. The main challenge to overcome is parallelisation of the globally non-local mathematical model. This thesis presents a numerical solution for elimination of numerical bottleneck associated with the non-local nature of the mathematical model. The accuracy and performance of the parallel code is identified by back-to-back testing with a similar serial version.
Resumo:
This thesis develops and tests various transient and steady-state computational models such as direct numerical simulation (DNS), large eddy simulation (LES), filtered unsteady Reynolds-averaged Navier-Stokes (URANS) and steady Reynolds-averaged Navier-Stokes (RANS) with and without magnetic field to investigate turbulent flows in canonical as well as in the nozzle and mold geometries of the continuous casting process. The direct numerical simulations are first performed in channel, square and 2:1 aspect rectangular ducts to investigate the effect of magnetic field on turbulent flows. The rectangular duct is a more practical geometry for continuous casting nozzle and mold and has the option of applying magnetic field either perpendicular to broader side or shorter side. This work forms the part of a graphic processing unit (GPU) based CFD code (CU-FLOW) development for magnetohydrodynamic (MHD) turbulent flows. The DNS results revealed interesting effects of the magnetic field and its orientation on primary, secondary flows (instantaneous and mean), Reynolds stresses, turbulent kinetic energy (TKE) budgets, momentum budgets and frictional losses, besides providing DNS database for two-wall bounded square and rectangular duct MHD turbulent flows. Further, the low- and high-Reynolds number RANS models (k-ε and Reynolds stress models) are developed and tested with DNS databases for channel and square duct flows with and without magnetic field. The MHD sink terms in k- and ε-equations are implemented as proposed by Kenjereš and Hanjalić using a user defined function (UDF) in FLUENT. This work revealed varying accuracies of different RANS models at different levels. This work is useful for industry to understand the accuracies of these models, including continuous casting. After realizing the accuracy and computational cost of RANS models, the steady-state k-ε model is then combined with the particle image velocimetry (PIV) and impeller probe velocity measurements in a 1/3rd scale water model to study the flow quality coming out of the well- and mountain-bottom nozzles and the effect of stopper-rod misalignment on fluid flow. The mountain-bottom nozzle was found more prone to the longtime asymmetries and higher surface velocities. The left misalignment of stopper gave higher surface velocity on the right leading to significantly large number of vortices forming behind the nozzle on the left. Later, the transient and steady-state models such as LES, filtered URANS and steady RANS models are combined with ultrasonic Doppler velocimetry (UDV) measurements in a GaInSn model of typical continuous casting process. LES-CU-LOW is the fastest and the most accurate model owing to much finer mesh and a smaller timestep. This work provided a good understanding on the performance of these models. The behavior of instantaneous flows, Reynolds stresses and proper orthogonal decomposition (POD) analysis quantified the nozzle bottom swirl and its importance on the turbulent flow in the mold. Afterwards, the aforementioned work in GaInSn model is extended with electromagnetic braking (EMBr) to help optimize a ruler-type brake and its location for the continuous casting process. The magnetic field suppressed turbulence and promoted vortical structures with their axis aligned with the magnetic field suggesting tendency towards 2-d turbulence. The stronger magnetic field at the nozzle well and around the jet region created large scale and lower frequency flow behavior by suppressing nozzle bottom swirl and its front-back alternation. Based on this work, it is advised to avoid stronger magnetic field around jet and nozzle bottom to get more stable and less defect prone flow.
Resumo:
Various mechanisms have been proposed to explain extreme waves or rogue waves in an oceanic environment including directional focusing, dispersive focusing, wave-current interaction, and nonlinear modulational instability. The Benjamin-Feir instability (nonlinear modulational instability), however, is considered to be one of the primary mechanisms for rogue-wave occurrence. The nonlinear Schrodinger equation is a well-established approximate model based on the same assumptions as required for the derivation of the Benjamin-Feir theory. Solutions of the nonlinear Schrodinger equation, including new rogue-wave type solutions are presented in the author's dissertation work. The solutions are obtained by using a predictive eigenvalue map based predictor-corrector procedure developed by the author. Features of the predictive map are explored and the influences of certain parameter variations are investigated. The solutions are rescaled to match the length scales of waves generated in a wave tank. Based on the information provided by the map and the details of physical scaling, a framework is developed that can serve as a basis for experimental investigations into a variety of extreme waves as well localizations in wave fields. To derive further fundamental insights into the complexity of extreme wave conditions, Smoothed Particle Hydrodynamics (SPH) simulations are carried out on an advanced Graphic Processing Unit (GPU) based parallel computational platform. Free surface gravity wave simulations have successfully characterized water-wave dispersion in the SPH model while demonstrating extreme energy focusing and wave growth in both linear and nonlinear regimes. A virtual wave tank is simulated wherein wave motions can be excited from either side. Focusing of several wave trains and isolated waves has been simulated. With properly chosen parameters, dispersion effects are observed causing a chirped wave train to focus and exhibit growth. By using the insights derived from the study of the nonlinear Schrodinger equation, modulational instability or self-focusing has been induced in a numerical wave tank and studied through several numerical simulations. Due to the inherent dissipative nature of SPH models, simulating persistent progressive waves can be problematic. This issue has been addressed and an observation-based solution has been provided. The efficacy of SPH in modeling wave focusing can be critical to further our understanding and predicting extreme wave phenomena through simulations. A deeper understanding of the mechanisms underlying extreme energy localization phenomena can help facilitate energy harnessing and serve as a basis to predict and mitigate the impact of energy focusing.
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
Floating-point computing with more than one TFLOP of peak performance is already a reality in recent Field-Programmable Gate Arrays (FPGA). General-Purpose Graphics Processing Units (GPGPU) and recent many-core CPUs have also taken advantage of the recent technological innovations in integrated circuit (IC) design and had also dramatically improved their peak performances. In this paper, we compare the trends of these computing architectures for high-performance computing and survey these platforms in the execution of algorithms belonging to different scientific application domains. Trends in peak performance, power consumption and sustained performances, for particular applications, show that FPGAs are increasing the gap to GPUs and many-core CPUs moving them away from high-performance computing with intensive floating-point calculations. FPGAs become competitive for custom floating-point or fixed-point representations, for smaller input sizes of certain algorithms, for combinational logic problems and parallel map-reduce problems. © 2014 Technical University of Munich (TUM).
Resumo:
This paper presents a new parallel implementation of a previously hyperspectral coded aperture (HYCA) algorithm for compressive sensing on graphics processing units (GPUs). HYCA method combines the ideas of spectral unmixing and compressive sensing exploiting the high spatial correlation that can be observed in the data and the generally low number of endmembers needed in order to explain the data. The proposed implementation exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs using shared memory and coalesced accesses to memory. The proposed algorithm is evaluated not only in terms of reconstruction error but also in terms of computational performance using two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN. Experimental results using real data reveals signficant speedups up with regards to serial implementation.
Resumo:
Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.
Resumo:
El avance en la potencia de cómputo en nuestros días viene dado por la paralelización del procesamiento, dadas las características que disponen las nuevas arquitecturas de hardware. Utilizar convenientemente este hardware impacta en la aceleración de los algoritmos en ejecución (programas). Sin embargo, convertir de forma adecuada el algoritmo en su forma paralela es complejo, y a su vez, esta forma, es específica para cada tipo de hardware paralelo. En la actualidad los procesadores de uso general más comunes son los multicore, procesadores paralelos, también denominados Symmetric Multi-Processors (SMP). Hoy en día es difícil hallar un procesador para computadoras de escritorio que no tengan algún tipo de paralelismo del caracterizado por los SMP, siendo la tendencia de desarrollo, que cada día nos encontremos con procesadores con mayor numero de cores disponibles. Por otro lado, los dispositivos de procesamiento de video (Graphics Processor Units - GPU), a su vez, han ido desarrollando su potencia de cómputo por medio de disponer de múltiples unidades de procesamiento dentro de su composición electrónica, a tal punto que en la actualidad no es difícil encontrar placas de GPU con capacidad de 200 a 400 hilos de procesamiento paralelo. Estos procesadores son muy veloces y específicos para la tarea que fueron desarrollados, principalmente el procesamiento de video. Sin embargo, como este tipo de procesadores tiene muchos puntos en común con el procesamiento científico, estos dispositivos han ido reorientándose con el nombre de General Processing Graphics Processor Unit (GPGPU). A diferencia de los procesadores SMP señalados anteriormente, las GPGPU no son de propósito general y tienen sus complicaciones para uso general debido al límite en la cantidad de memoria que cada placa puede disponer y al tipo de procesamiento paralelo que debe realizar para poder ser productiva su utilización. Los dispositivos de lógica programable, FPGA, son dispositivos capaces de realizar grandes cantidades de operaciones en paralelo, por lo que pueden ser usados para la implementación de algoritmos específicos, aprovechando el paralelismo que estas ofrecen. Su inconveniente viene derivado de la complejidad para la programación y el testing del algoritmo instanciado en el dispositivo. Ante esta diversidad de procesadores paralelos, el objetivo de nuestro trabajo está enfocado en analizar las características especificas que cada uno de estos tienen, y su impacto en la estructura de los algoritmos para que su utilización pueda obtener rendimientos de procesamiento acordes al número de recursos utilizados y combinarlos de forma tal que su complementación sea benéfica. Específicamente, partiendo desde las características del hardware, determinar las propiedades que el algoritmo paralelo debe tener para poder ser acelerado. Las características de los algoritmos paralelos determinará a su vez cuál de estos nuevos tipos de hardware son los mas adecuados para su instanciación. En particular serán tenidos en cuenta el nivel de dependencia de datos, la necesidad de realizar sincronizaciones durante el procesamiento paralelo, el tamaño de datos a procesar y la complejidad de la programación paralela en cada tipo de hardware. Today´s advances in high-performance computing are driven by parallel processing capabilities of available hardware architectures. These architectures enable the acceleration of algorithms when thes ealgorithms are properly parallelized and exploit the specific processing power of the underneath architecture. Most current processors are targeted for general pruposes and integrate several processor cores on a single chip, resulting in what is known as a Symmetric Multiprocessing (SMP) unit. Nowadays even desktop computers make use of multicore processors. Meanwhile, the industry trend is to increase the number of integrated rocessor cores as technology matures. On the other hand, Graphics Processor Units (GPU), originally designed to handle only video processing, have emerged as interesting alternatives to implement algorithm acceleration. Current available GPUs are able to implement from 200 to 400 threads for parallel processing. Scientific computing can be implemented in these hardware thanks to the programability of new GPUs that have been denoted as General Processing Graphics Processor Units (GPGPU).However, GPGPU offer little memory with respect to that available for general-prupose processors; thus, the implementation of algorithms need to be addressed carefully. Finally, Field Programmable Gate Arrays (FPGA) are programmable devices which can implement hardware logic with low latency, high parallelism and deep pipelines. Thes devices can be used to implement specific algorithms that need to run at very high speeds. However, their programmability is harder that software approaches and debugging is typically time-consuming. In this context where several alternatives for speeding up algorithms are available, our work aims at determining the main features of thes architectures and developing the required know-how to accelerate algorithm execution on them. We look at identifying those algorithms that may fit better on a given architecture as well as compleme
Resumo:
This thesis explores the capabilities of heterogeneous multi-core systems, based on multiple Graphics Processing Units (GPUs) in a standard desktop framework. Multi-GPU accelerated desk side computers are an appealing alternative to other high performance computing (HPC) systems: being composed of commodity hardware components fabricated in large quantities, their price-performance ratio is unparalleled in the world of high performance computing. Essentially bringing “supercomputing to the masses”, this opens up new possibilities for application fields where investing in HPC resources had been considered unfeasible before. One of these is the field of bioelectrical imaging, a class of medical imaging technologies that occupy a low-cost niche next to million-dollar systems like functional Magnetic Resonance Imaging (fMRI). In the scope of this work, several computational challenges encountered in bioelectrical imaging are tackled with this new kind of computing resource, striving to help these methods approach their true potential. Specifically, the following main contributions were made: Firstly, a novel dual-GPU implementation of parallel triangular matrix inversion (TMI) is presented, addressing an crucial kernel in computation of multi-mesh head models of encephalographic (EEG) source localization. This includes not only a highly efficient implementation of the routine itself achieving excellent speedups versus an optimized CPU implementation, but also a novel GPU-friendly compressed storage scheme for triangular matrices. Secondly, a scalable multi-GPU solver for non-hermitian linear systems was implemented. It is integrated into a simulation environment for electrical impedance tomography (EIT) that requires frequent solution of complex systems with millions of unknowns, a task that this solution can perform within seconds. In terms of computational throughput, it outperforms not only an highly optimized multi-CPU reference, but related GPU-based work as well. Finally, a GPU-accelerated graphical EEG real-time source localization software was implemented. Thanks to acceleration, it can meet real-time requirements in unpreceeded anatomical detail running more complex localization algorithms. Additionally, a novel implementation to extract anatomical priors from static Magnetic Resonance (MR) scansions has been included.
Resumo:
This thesis deals with heterogeneous architectures in standard workstations. Heterogeneous architectures represent an appealing alternative to traditional supercomputers because they are based on commodity components fabricated in large quantities. Hence their price-performance ratio is unparalleled in the world of high performance computing (HPC). In particular, different aspects related to the performance and consumption of heterogeneous architectures have been explored. The thesis initially focuses on an efficient implementation of a parallel application, where the execution time is dominated by an high number of floating point instructions. Then the thesis touches the central problem of efficient management of power peaks in heterogeneous computing systems. Finally it discusses a memory-bounded problem, where the execution time is dominated by the memory latency. Specifically, the following main contributions have been carried out: A novel framework for the design and analysis of solar field for Central Receiver Systems (CRS) has been developed. The implementation based on desktop workstation equipped with multiple Graphics Processing Units (GPUs) is motivated by the need to have an accurate and fast simulation environment for studying mirror imperfection and non-planar geometries. Secondly, a power-aware scheduling algorithm on heterogeneous CPU-GPU architectures, based on an efficient distribution of the computing workload to the resources, has been realized. The scheduler manages the resources of several computing nodes with a view to reducing the peak power. The two main contributions of this work follow: the approach reduces the supply cost due to high peak power whilst having negligible impact on the parallelism of computational nodes. from another point of view the developed model allows designer to increase the number of cores without increasing the capacity of the power supply unit. Finally, an implementation for efficient graph exploration on reconfigurable architectures is presented. The purpose is to accelerate graph exploration, reducing the number of random memory accesses.
Resumo:
This paper outlines the problems found in the parallelization of SPH (Smoothed Particle Hydrodynamics) algorithms using Graphics Processing Units. Different results of some parallel GPU implementations in terms of the speed-up and the scalability compared to the CPU sequential codes are shown. The most problematic stage in the GPU-SPH algorithms is the one responsible for locating neighboring particles and building the vectors where this information is stored, since these specific algorithms raise many dificulties for a data-level parallelization. Because of the fact that the neighbor location using linked lists does not show enough data-level parallelism, two new approaches have been pro- posed to minimize bank conflicts in the writing and subsequent reading of the neighbor lists. The first strategy proposes an efficient coordination between CPU-GPU, using GPU algorithms for those stages that allow a straight forward parallelization, and sequential CPU algorithms for those instructions that involve some kind of vector reduction. This coordination provides a relatively orderly reading of the neighbor lists in the interactions stage, achieving a speed-up factor of x47 in this stage. However, since the construction of the neighbor lists is quite expensive, it is achieved an overall speed-up of x41. The second strategy seeks to maximize the use of the GPU in the neighbor's location process by executing a specific vector sorting algorithm that allows some data-level parallelism. Al- though this strategy has succeeded in improving the speed-up on the stage of neighboring location, the global speed-up on the interactions stage falls, due to inefficient reading of the neighbor vectors. Some changes to these strategies are proposed, aimed at maximizing the computational load of the GPU and using the GPU texture-units, in order to reach the maximum speed-up for such codes. Different practical applications have been added to the mentioned GPU codes. First, the classical dam-break problem is studied. Second, the wave impact of the sloshing fluid contained in LNG vessel tanks is also simulated as a practical example of particle methods
Resumo:
Many computer vision and human-computer interaction applications developed in recent years need evaluating complex and continuous mathematical functions as an essential step toward proper operation. However, rigorous evaluation of this kind of functions often implies a very high computational cost, unacceptable in real-time applications. To alleviate this problem, functions are commonly approximated by simpler piecewise-polynomial representations. Following this idea, we propose a novel, efficient, and practical technique to evaluate complex and continuous functions using a nearly optimal design of two types of piecewise linear approximations in the case of a large budget of evaluation subintervals. To this end, we develop a thorough error analysis that yields asymptotically tight bounds to accurately quantify the approximation performance of both representations. It provides an improvement upon previous error estimates and allows the user to control the trade-off between the approximation error and the number of evaluation subintervals. To guarantee real-time operation, the method is suitable for, but not limited to, an efficient implementation in modern Graphics Processing Units (GPUs), where it outperforms previous alternative approaches by exploiting the fixed-function interpolation routines present in their texture units. The proposed technique is a perfect match for any application requiring the evaluation of continuous functions, we have measured in detail its quality and efficiency on several functions, and, in particular, the Gaussian function because it is extensively used in many areas of computer vision and cybernetics, and it is expensive to evaluate.