915 resultados para glucose tolerance
Resumo:
Objectives: To describe the glycaemic status (assessed by an oral glucose tolerance test (OGTT)) and associated comorbidities in a cohort of Australian children and adolescents at risk of insulin resistance and impaired glucose homeostasis (IGH). Methods: Twenty-one children and adolescents (three male, 18 female) (18 Caucasian, one Indigenous, two Asian) (20 obese, one lipodystrophy) referred to the Paediatric Endocrinology and Diabetes Clinic underwent a 2-h OGTT with plasma glucose and insulin measured at baseline, + 60 and + 120 min. If abnormal, the OGTT was repeated. Results: The mean (SD) age was 14.2 (1.6) years, BMI 38.8 (7.0) kg/m(2) and BMI-SDS 3.6 (0.6). Fourteen patients had fasting insulin levels >21 mU/L. Type 2 diabetes mellitus was diagnosed in one patient, impaired glucose tolerance (IGT) in four patients and impaired fasting glycaemia (IFG) in one patient. Despite no weight loss, only one patient had a persistently abnormal OGTT on repeat testing. Three patients with IGH were medicated with risperidone at the time of the initial OGTT. One patient who had persistent IGT had continued risperidone. The other two patients had initial OGTT results of IGT and diabetes mellitus type 2. They both ceased risperidone between tests and repeat OGTT showed normal glycaemic status. Conclusions: Use of fasting glucose alone may miss cases of IGH. Diagnosis of IGT should not be made on one test alone. Interpretation of glucose and insulin responses in young people is limited by lack of normative data. Larger studies are needed to generate Australian screening recommendations. Further assessment of the potential adverse effects of atypical antipsychotic medication on glucose homeostasis in this at-risk group is important.
Resumo:
Posttransplantation diabetes (PTD) contributes to cardiovascular disease and graft loss in renal transplant recipients (RTR). Current recommendations advise fasting blood glucose (FBG) as the screening and diagnostic test of choice for PTD. This study sought to determine (1) the predictive power of FBG with respect to 2-h blood glucose (2HBG) and (2) the prevalence of PTD using FBG and 2HBG compared with that using FBG alone, in prevalent RTR. A total of 200 RTR (mean age 52 yr; 59% male; median transplant duration 6.6 yr) who were >6 mo posttransplantation and had no known history of diabetes were studied. Patients with FBG
Resumo:
To investigate the relationship between vascular function parameters measured at the retinal and systemic level and known markers for cardiovascular risk in patients with impaired glucose tolerance (IGT). Sixty age- and gender- matched White-European adults (30 IGT and 30 normal glucose tolerance -NGT) were recruited for the study. Fasting plasma glucose, lipids and 24-hour blood pressure (BP) was measured in all subjects. Systemic vascular and endothelial function was assessed using carotid-artery intimal media thickness (cIMT) and flow mediated dilation (FMD). Retinal vascular reactivity was assessed by the Dynamic Retinal Vessel Analyser (DVA). Additionally, blood glutathione (GSH, GSSG and tGSH) and plasma von-Willebrand (vWF) factor levels were also measured. Individuals with IGT demonstrated higher BP values (p<0.001), fasting TG and TG:HDL ratios (p<0.001) than NGT subjects. Furthermore, Total:HDL-C ratios and Framingham scores were raised (p=0.010 and p<0.001 respectively). Blood glutathione levels (GSH, GSSG and tGSH) were lower (p<0.001, p=0.039 and p<0.001 respectively) while plasma vWF was increased (p=0.014) in IGT subjects compared to controls. IGT individuals also demonstrated higher IMT in right and left carotid arteries (p=0.017 and p=0.005, respectively) alongside larger brachial artery diameter (p=0.015), lower FMD% (p=0.026) and GTN induced dilation (GID) (p=0.012) than healthy controls. At the retinal arterial level, the IGT subjects showed higher baseline fluctuations (BDF) (p=0.026), longer reaction time (RT) (p=0.032) and reduced baseline-corrected flicker response (bFR) (p=0.045). In IGT subjects retinal BDF correlated with and Total:HDL (p= 0.003) and HDL-C (p= 0.004). Arterial RT also correlated with FMD (p=0.017) in IGT but not NGT subjects. In IGT individuals there is a relationship between macro- and microvascular function, as well as a direct correlation between the observed retinal microcirculatory changes and established plasma markers for CVD. Multifactorial preventive interventions to decrease vascular risk in these individuals should be considered.
Resumo:
This study evaluates the antidiabetic potential of an enzyme-resistant analog, (Val8)GLP-1. The effects of daily administration of a novel dipeptidyl peptidase IV-resistant glucagon-like peptide-1 (GLP-1) analog, (Val8)GLP-1, on glucose tolerance and pancreatic β-cell function were examined in obese-diabetic (ob/ob) mice. Acute intraperitoneal administration of (Val8)GLP-1 (6.25-25 nmol/kg) with glucose increased the insulin response and reduced the glycemic excursion in a dose-dependent manner. The effects of (Val8)GLP-1 were greater and longer lasting than native GLP-1. Once-daily subcutaneous administration of (Val8)GLP-1 (25 nmol/kg) for 21 days reduced plasma glucose concentrations, increased plasma insulin, and reduced body weight more than native GLP-1 without a significant change in daily food intake. Furthermore, (Val8)GLP-1 improved glucose tolerance, reduced the glycemic excursion after feeding, increased the plasma insulin response to glucose and feeding, and improved insulin sensitivity. These effects were consistently greater with (Val8)GLP-1 than with native GLP-1, and both peptides retained or increased their acute efficacy compared with initial administration. (Val8)GLP-1 treatment increased average islet area 1.2-fold without changing the number of islets, resulting in an increased number of larger islets. These data demonstrate that (Val8)GLP-1 is more effective and longer acting than native GLP-1 in obese-diabetic ob/ob mice.
Resumo:
OBJECTIVE: The orexigenic gut hormone ghrelin and its receptor are present in pancreatic islets. Although ghrelin reduces insulin secretion in rodents, its effect on insulin secretion in humans has not been established. The goal of this study was to test the hypothesis that circulating ghrelin suppresses glucose-stimulated insulin secretion in healthy subjects. RESEARCH DESIGN AND METHODS: Ghrelin (0.3, 0.9 and 1.5 nmol/kg/h) or saline was infused for more than 65 min in 12 healthy patients (8 male/4 female) on 4 separate occasions in a counterbalanced fashion. An intravenous glucose tolerance test was performed during steady state plasma ghrelin levels. The acute insulin response to intravenous glucose (AIRg) was calculated from plasma insulin concentrations between 2 and 10 min after the glucose bolus. Intravenous glucose tolerance was measured as the glucose disappearance constant (Kg) from 10 to 30 min. RESULTS: The three ghrelin infusions raised plasma total ghrelin concentrations to 4-, 15-, and 23-fold above the fasting level, respectively. Ghrelin infusion did not alter fasting plasma insulin or glucose, but compared with saline, the 0.3, 0.9, and 1.5 nmol/kg/h doses decreased AIRg (2,152 +/- 448 vs. 1,478 +/- 2,889, 1,419 +/- 275, and 1,120 +/- 174 pmol/l) and Kg (0.3 and 1.5 nmol/kg/h doses only) significantly (P < 0.05 for all). Ghrelin infusion raised plasma growth hormone and serum cortisol concentrations significantly (P < 0.001 for both), but had no effect on glucagon, epinephrine, or norepinephrine levels (P = 0.44, 0.74, and 0.48, respectively). CONCLUSIONS: This is a robust proof-of-concept study showing that exogenous ghrelin reduces glucose-stimulated insulin secretion and glucose disappearance in healthy humans. Our findings raise the possibility that endogenous ghrelin has a role in physiologic insulin secretion, and that ghrelin antagonists could improve beta-cell function.
Resumo:
Endurance exercise training as well as leucine supplementation modulates glucose homeostasis and protein turnover in mammals. Here, we analyze whether leucine supplementation alters the effects of endurance exercise on these parameters in healthy mice. Mice were distributed into sedentary (C) and exercise (T) groups. The exercise group performed a 12-week swimming protocol. Half of the C and T mice, designated as the CL and TL groups, were supplemented with leucine (1.5 % dissolved in the drinking water) throughout the experiment. As well known, endurance exercise training reduced body weight and the retroperitoneal fat pad, increased soleus mass, increased VO2max, decreased muscle proteolysis, and ameliorated peripheral insulin sensitivity. Leucine supplementation had no effect on any of these parameters and worsened glucose tolerance in both CL and TL mice. In the soleus muscle of the T group, AS-160(Thr-642) (AKT substrate of 160 kDa) and AMPK(Thr-172) (AMP-Activated Protein Kinase) phosphorylation was increased by exercise in both basal and insulin-stimulated conditions, but it was reduced in TL mice with insulin stimulation compared with the T group. Akt phosphorylation was not affected by exercise but was lower in the CL group compared with the other groups. Leucine supplementation increased mTOR phosphorylation at basal conditions, whereas exercise reduced it in the presence of insulin, despite no alterations in protein synthesis. In trained groups, the total FoxO3a protein content and the mRNA for the specific isoforms E2 and E3 ligases were reduced. In conclusion, leucine supplementation did not potentiate the effects of endurance training on protein turnover, and it also reduced its positive effects on glucose homeostasis.
Resumo:
Biochemical markers for remission on acromegaly activity are controversial. We studied a subset of treated acromegalic patients with discordant nadir GH levels after oral glucose tolerance test (oGTT) and IGF-I values to refine the current consensus on acromegaly remission. We also compared GH results by two GH immunoassays. From a cohort of 75 treated acromegalic patients, we studied 13 patients who presented an elevated IGF-I despite post-oGTT nadir GH of <= 1 mu g/l. The 12-h daytime GH profile (GH-12 h), nadir GH after oGTT, and basal IGF-I levels were studied in patients and controls. Bland-Altman method showed high concordance between GH assays. Acromegalic patients showed higher mean GH-12 h values (0.71+/-0.36 vs. 0.31+/-0.28 mu g/l; p<0.05) and nadir GH after oGTT (0.48+/-0.32 vs. 0.097+/-0.002 mu g/l; p<0.05) as compared to controls. Nadir GH correlated with mean GH-12 h (r=0.92, p<0.05). The mean GH-12 h value from upper 95% CI of controls (0.54 mu g/l) would correspond to a theoretical normal nadir GH of <= 0.27 mu g/l. Patients with GH nadir <= 0.3 mu g/l had IGF-I between 100-130% ULNR (percentage of upper limit of normal range) and mean GH-12 h of 0.35+/-0.15, and patients with GH nadir >0.3 and <= 1 mu g/l had IGF-I >130% ULNR and mean GH-12 h of 0.93+/-0.24 mu g/l. Our data integrate daytime GH secretion, nadir GH after oGTT, and plasma IGF-I concentrations showing a continuum of mild residual activity in a subgroup of treated acromegaly with nadir GH values <= 1 mu g/l. The degree of increased IGF-I levels and nadir GH after oGTT are correlated with the subtle abnormalities of daytime GH secretion.
Resumo:
Glucose intolerance in fluorosis areas and when fluoride is administered for the treatment of osteoporosis has been reported. Controlled fluoridation of drinking water is regarded as a safe and effective measure to control dental caries. However, the effect on glucose homeostasis was not studied so far. The aim of this study was to evaluate the effect of the intake of fluoridated water supply on glucose metabolism in rats with normal and deficient renal function. Male Sprague-Dawley rats were divided into eight groups of four rats. Renal insufficiency was induced in four groups (NX) which received drinking water containing 0, 1, 5, and 15 ppm F (NaF) for 60 days. Four groups with simulated surgery acted as controls. There were no differences in plasma glucose concentration after a glucose tolerance test between controls and NX rats and among rats with different intakes of fluoride. However, plasma insulin level increased as a function of fluoride concentration in drinking water, both in controls and in NX rats. It is concluded that the consumption of fluoridated water from water supply did not affect plasma glucose levels even in cases of animals with renal disease. However, a resistance to insulin action was demonstrated.
Resumo:
Placental growth hormone (PGH) progressively replaces pituitary growth hormone in the maternal circulation from mid-gestation onwards in human pregnancy. Our previous investigations have shown that placental growth hormone concentrations correlate well with foetal growth. Despite the apparent correlation between PGH and birthweight, the physiology of its secretion during pregnancy has not been well defined. We investigated the response of maternal serum PCH to oral glucose loading in pregnant women (n = 24) who demonstrated normal glucose tolerance at a mean gestation of 29 weeks. Mean (SEM) fasting PGH concentrations were high (36.9 [6.4] ng/ml). No suppression of PGH was noted at one, two or three hours after a 75 g oral glucose load. Similarly, no changes were noted in growth hormone binding protein or in calculated free PGH over the course of the glucose tolerance test. As expected, insulin concentrations rose sixfold and insulin like growth factor binding protein 1 concentrations fell by 20% with glucose loading. Cot-relation analysis showed maternal weight, BMI, fasting serum glucose serum insulin to be significantly correlated with the babies' birthweight. Our results support the proposition that PGH concentrations in maternal serum are not Suppressed by oral glucose loading in non-diabetic mothers.