970 resultados para genetic regulation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In 2006, the first report of a nanostructured material as adjuvant was described establishing the effectiveness of the ordered mesoporous SBA-15 silica as an immune adjuvant. The present study evaluated the SBA-15 capacity to modulate the immune responsiveness of High and Low responder mice immunized with BSA encapsulated/adsorbed in SBA-15 by the intramuscular or oral route and the adjuvant effect was compared with the responsiveness induced by BSA in aluminum hydroxide salts or emulsified in Incomplete Freund adjuvant. These results demonstrate the ability of the non-toxic SBA-15 nanoparticles to increase the immunogenicity and repair the responsiveness of the constitutively low responder individuals inducing both the IgG2a and the IgG1 isotypes, independently of the immune cell committed and conditioning the low phenotype. This new adjuvant may reveal novel therapeutic targets for immune modulation and vaccine design. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cellular role of creatine (Cr) and Cr phosphate (CrP) has been studied extensively in neural, cardiac and skeletal muscle. Several studies have demonstrated that alterations in the cellular total Cr (Cr + CrP) concentration in these tissues can produce marked functional and/or structural change. The primary aim of this review was to critically evaluate the literature that has examined the regulation of cellular total Cr content. In particular, the review focuses on the regulation of the activity and gene expression of the Cr transporter (CreaT), which is primarily responsible for cellular Cr uptake. Two CreaT genes (CreaT1 and CreaT2) have been identified and their chromosomal location and DNA sequencing have been completed. From these data, putative structures of the CreaT proteins have been formulated. Transcription products of the CreaT2 gene are expressed exclusively in the testes, whereas CreaT1 transcripts are found in a variety of tissues. Recent research has measured the expression of the CreaT1 protein in several tissues including neural, cardiac and skeletal muscle. There is very little information available about the factors regulating CreaT gene expression. There is some evidence that suggests the intracellular Cr concentration may be involved in the regulatory process but there is much more to learn before this process is understood. The activity of the CreaT protein is controlled by many factors. These include substrate concentration, transmembrane Na+ gradients, cellular location, and various hormones. It is also likely that transporter activity is influenced by its phosphorylation state and by its interaction with other plasma membrane proteins. The extent of CreaT protein glycosylation may vary within cells, the functional significance of which remains unclear.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is mounting evidence in support of the view that skeletal muscle hypertrophy results from the complex and coordinated interaction of numerous signalling pathways. Well characterised components integral to skeletal muscle adaptation include the transcriptional activity of the members of the myogenic regulatory factors, numerous secreted peptide growth factors, and the regenerative potential of satellite cells. Whilst studies investigating isolated components or pathways have enhanced our current understanding of skeletal muscle hypertrophy, our knowledge of how all of these components react in concert to a common stimulus remains limited. The broad aim of this thesis was to identify and characterise novel genes involved in skeletal muscle hypertrophy. We have created a customised human skeletal muscle specific microarray which contains ∼11,000 cDNA clones derived from a normalised human skeletal muscle cDNA library as well as 270 genes with known functional roles in human skeletal muscle. The first aspect of this thesis describes the production of the microarray and evaluates the robustness and reproducibility of this analytical technique. Study one aimed to use this microarray in the identification of genes that are differentially expressed during the forced differentiation of human rhabdomyosarcoma cells, an in vitro model of skeletal muscle development. Firstly using this unique model of aberrant myogenic differentiation we aimed to identify genes with previously unidentified roles in myogenesis. Secondly, the data from this study permitted the examination of the performance of the microarray in detecting differential gene expression in a biological system. We identified several new genes with potential roles in the myogenic arrest of rhabdomyosarcoma and further characterised the expression of muscle specific genes in rhabdomyosarcoma differentiation. In study two, the molecular responses of cell cycle regulators, muscle regulatory factors, and atrophy related genes were mapped in response to a single bout of resistance exercise in human skeletal muscle. We demonstrated an increased expression of MyoD, myogenin and p21, whilst the expression of myostatin was decreased. The results of this study contribute to the existing body of knowledge on the molecular regulation skeletal muscle to a hypertrophic stimulus. In study three, the muscle samples collected in study two were analysed using the human skeletal muscle specific microarray for the identification of novel genes with potential roles in the hypertrophic process. The analysis uncovered four interesting genes (TXNIP, MLP, ASB5, FLJ 38973) that have not previously been examined in human skeletal muscle in response to resistance exercise. The functions of these genes and their potential roles in skeletal muscle are discussed. In study four, the four genes identified in study three were examined in human primary skeletal muscle cell cultures during myogenic differentiation. Human primary skeletal muscle cells were derived from the vastus lateralis muscle of 8 healthy volunteers (6 males and 2 females). Cell cultures were differentiated using serum withdrawal and serum withdrawal combined with IGF-1 supplementation. Markers of the cell proliferation, cell cycle arrest and myogenic differentiation were examined to assess the effectiveness of the differentiation stimulus. Additionally, the expressions of TXNIP, MLP, ASB5 and FLJ 38973 measured in an attempt to characterise further their roles in skeletal muscle. The expression of TXNIP changed markedly in response to both differentiation stimuli, whilst the expression of the remaining genes were not altered. Therefore it was suggested that expression of these genes might be responsive to the mechanical strain or contraction induced by the resistance exercise. In order to examine whether these novel genes responded specifically to resistance type exercise, their expression was examined following a single bout of endurance exercise. The expression of TXNIP, MLP, and FLJ 38973 remained unchanged whilst ASB5 increased 30 min following the cessation of the exercise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Skeletal muscle is the most significant site for whole body fat utilisation. The ability to regulate fat use has a significant impact on the development of obesity and Type II diabetes. The studies conducted during this PhD provided significant insight into the complex molecular regulation of skeletal muscle fat utilisation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation identified and characterised a key genetic regulator called Stat5 using zebrafish. Up-regulation of Stat5 led to an increase in blood cells, indicative of pre-leukaemia, whilst down-regulation decreased these cells and caused other defects. This work shows that Stat5 is critical in blood cell maturation and early embryonic development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, AHI1 and NDRG2 gene function in the insulin signalling pathways regulating skeletal muscle homeostasis was investigated. Findings implicate AHI1 in the regulation of insulin-stimulated glucose transport and the development of insulin resistance, whilst associating NDRG2 with the regulation of myoblast proliferation and differentiation; possible via interactions with PICK1 and arfaptin2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The N-linked glycosylation of secretory and membrane proteins is the most complex posttranslational modification known to occur in eukaryotic cells. It has been shown to play critical roles in modulating protein function. Although this important biological process has been extensively studied in mammals, much less is known about this biosynthetic pathway in plants. The enzymes involved in plant N-glycan biosynthesis and processing are still not well defined and the mechanism of their genetic regulation is almost completely unknown. In this paper we describe our first attempt to understand the N-linked glycosylation mechanism in a plant species by using the data generated by the Sugarcane Expressed Sequence Tag (SUCEST) project. The SUCEST database was mined for sugarcane gene products potentially involved in the N-glycosylation pathway. This approach has led to the identification and functional assignment of 90 expressed sequence tag (EST) clusters sharing significant sequence similarity with the enzymes involved in N-glycan biosynthesis and processing. The ESTs identified were also analyzed to establish their relative abundance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mice genetically selected for high (H) and low (L) antibody production (Selection IV-A) were used as murine experimental model. The aim of the present work was to evaluate the macrophagic activity and to characterize the immune response in Mycobacterium bovis-AN5 infected mice (3×10 7 bacteria). The response profile previously observed in such strains was not similar to that obtained during M. bovis infection; however, it corroborated works carried out using Selection I, which is very similar to Selection IV-A regarding infection by M. tuberculosis and Bacillus Calmette-Guérin (BCG). Considering bacterial recovery, LIV-A mice showed higher control of the infectious process in the lungs than in the spleen, whereas HIV-A mice presented more resistance in the spleen. With respect to macrophagic activity, hydrogen peroxide (H2O 2) was probably not involved in the infection control since there was an inhibition in the production of this metabolite. Nitric oxide (NO) and TNF-α production seemed to be important in the control of bacterial replication and varied according to the strain, period and organ. Evaluation of the antibody production indicated that the multi-specific effect commonly observed in these strains was not the same in the response to M. bovis. Antibody concentrations were higher in LIV-A than in HIV-A mice at the beginning of the infection, being similar afterwards. Such data were compared with delayed-type hypersensitivity (DTH), which was more intense in HIV-A than in LIV-A mice, indicating that antibody production is independent of the capability to trigger DTH reactions and that cellular and humoral responses to M. bovis antigens show a polygenic control and an independent quantitative genetic regulation. Differences were observed among organs and metabolites, suggesting that different mechanisms play an important role in this infection in natural heterogeneous populations, indicating that NO, TNF-α and Th1 cytokines are involved in the infection control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The physiological state of yeast cells changes during culture growth as a consequence of environmental changes (nutrient limitations, pH and metabolic products). Cultures that grow exponentially are heterogeneous cell populations made up of cells regulated by different metabolic and/or genetic control systems. The strain of baker's yeast selected by plating commercial compressed yeast was used for the production of glycerol-3- phosphate dehydrogenase. Glycerol-3-phosphate dehydrogenase (GPD) has been widely used in the enzyme assays with diverse compounds of industrial interest, such as glycerol or glycerol phosphate, as well as a number of important bioanalytical applications. Each cell state determines the level of key enzymes (genetic control), fluxes through metabolic pathways (metabolic control), cell morphology and size. The present study was carried out to determine the effects of environmental conditions and carbon source on GPD production from baker's yeast. Glucose, glycerol, galactose and ethanol were used as carbon sources. Glycerol and ethanol assimilations required agitation, which was dependent on the medium volume in the fermentation flask for the greatest accumulation of intracellular GPD. Enzyme synthesis was also affected by the initial pH of the medium and inoculum size. The fermentation time required for a high level of enzyme formation decreased with the inoculum size. The greatest amount of enzyme (0.45 U/ml) was obtained with an initial pH of 4.5 in the medium containing ethanol or glycerol. The final pH was maintained in YP-ethanol, but in the YP-glycerol the final pH increased to 6.9 during growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents a comparative developmental study of inflorescences and focuses on the production of the terminal flower (TF). Morphometric attributes of inflorescence meristems (IM) were obtained throughout the ontogeny of inflorescence buds with the aim of describing possible spatial constraints that could explain the failure in developing the TF. The study exposes the inflorescence ontogeny of 20 species from five families of the Eudicots (Berberidaceae, Papaveraceae-Fumarioideae, Rosaceae, Campanulaceae and Apiaceae) in which 745 buds of open (i.e. without TF) and closed (i.e. with TF) inflorescences were observed under the scanning electron microscope.rnThe study shows that TFs appear on IMs which are 2,75 (se = 0,38) times larger than the youngest lateral reproductive primordium. The shape of these IMs is characterized by a leaf arc (phyllotactic attribute) of 91,84° (se = 7,32) and a meristematic elevation of 27,93° (se = 5,42). IMs of open inflorescences show a significant lower relative surface, averaging 1,09 (se=0,26) times the youngest primordium size, which suggests their incapacity for producing TFs. The relative lower size of open IMs is either a condition throughout the complete ontogeny (‘open I’) or a result from the drastic reduction of the meristematic surface after flower segregation (‘open II’). rnIt is concluded that a suitable bulge configuration of the IM is a prerequisite for TF formation. Observations in the TF-facultative species Daucus carota support this view, as the absence of the TF in certain umbellets is correlated with a reduction of their IM dimensions. A review of literature regarding histological development of IMs and genetic regulation of inflorescences suggests that in ‘open I’ inflorescences, the histological composition and molecular activity at the tip of the IM could impede the TF differentiation. On the other side, in ‘open II’ inflorescences, the small final IM bulge could represent a spatial constraint that hinders the differentiation of the TF. The existence of two distinct kinds of ontogenies of open inflorescences suggests two ways in which the loss of the TF could have occurred in the course of evolution.rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Approximately 3% of the world population is chronically infected with the hepatitis C virus (HCV), with potential development of cirrhosis and hepatocellular carcinoma. Despite the availability of new antiviral agents, treatment remains suboptimal. Genome-wide association studies (GWAS) identified rs12979860, a polymorphism nearby IL28B, as an important predictor of HCV clearance. We report the identification of a novel TT/-G polymorphism in the CpG region upstream of IL28B, which is a better predictor of HCV clearance than rs12979860. By using peripheral blood mononuclear cells (PBMCs) from individuals carrying different allelic combinations of the TT/-G and rs12979860 polymorphisms, we show that induction of IL28B and IFN-γ–inducible protein 10 (IP-10) mRNA relies on TT/-G, but not rs12979860, making TT/-G the only functional variant identified so far. This novel step in understanding the genetic regulation of IL28B may have important implications for clinical practice, as the use of TT/G genotyping instead of rs12979860 would improve patient management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plant architecture is species specific, indicating that it is under strict genetic control. Although it is also influenced by environmental conditions such as light, temperature, humidity and nutrient status, here we wish to focus only on the endogenous regulatory principles that control plant architecture. We summarise recent progress in the understanding of the basic patterning mechanisms involved in the regulation of leaf arrangement, the genetic regulation of meristem determinacy, i.e. the decision to stop or continue growth, and the control of branching during vegetative and generative development. Finally, we discuss the basis of leaf architecture and the role of cell division and cell growth in morphogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Growth in plants results from the interaction between genetic and signalling networks and the mechanical properties of cells and tissues. There has been a recent resurgence in research directed at understanding the mechanical aspects of growth, and their feedback on genetic regulation. This has been driven in part by the development of new micro-indentation techniques to measure the mechanical properties of plant cells in vivo. However, the interpretation of indentation experiments remains a challenge, since the force measures results from a combination of turgor pressure, cell wall stiffness, and cell and indenter geometry. In order to interpret the measurements, an accurate mechanical model of the experiment is required. Here, we used a plant cell system with a simple geometry, Nicotiana tabacum Bright Yellow-2 (BY-2) cells, to examine the sensitivity of micro-indentation to a variety of mechanical and experimental parameters. Using a finite-element mechanical model, we found that, for indentations of a few microns on turgid cells, the measurements were mostly sensitive to turgor pressure and the radius of the cell, and not to the exact indenter shape or elastic properties of the cell wall. By complementing indentation experiments with osmotic experiments to measure the elastic strain in turgid cells, we could fit the model to both turgor pressure and cell wall elasticity. This allowed us to interpret apparent stiffness values in terms of meaningful physical parameters that are relevant for morphogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resulta interesante comprender como microorganismos sencillos como la bacteria Escherichia coli poseen mecanismos no tan simples para responder al entorno en el que está gestionada por complicadas redes de regulación formadas por genes y proteínas, donde cada elemento de la red genética debe tomar parte en armonía, en el momento justo y la cantidad adecuada para dar lugar a la respuesta celular apropiada. La biología sintética es un nuevo área de la biología y la tecnología que fusiona la biolog ía molecular, la ingeniería genética y las herramientas computacionales, para crear sistemas biológicos con funcionalidades novedosas. Los sistemas creados sintéticamente son ya una realidad, y cada vez se acumulan más trabajos alrededor del mundo que muestran su factibilidad. En este campo no solo se hacen pequeñas modificaciones en la información genética, sino que también se diseñan, manipulan e introducen circuitos genéticos a los organismos. Actualmente, se hace un gran esfuerzo para construir circuitos genéticos formados por numerosos genes y caracterizar la interacción de los mismos con otras moléculas, su regulaci ón, expresión y funcionalidad en diferentes organismos. La mayoría de los proyectos de biología sintética que se han desarrollado hasta ahora, se basan en el conocimiento actual del funcionamiento de los organismos vivos. Sin embargo, la información es numerosa y creciente, por lo que se requiere de herramientas computacionales y matem áticas para integrar y hacer manejable esta gran cantidad de información. El simulador de colonias bacterianas GRO posee la capacidad de representar las dinámicas más simples del comportamiento celular, tales como crecimiento, división y comunicación intercelular mediante conjugación, pero carece de la capacidad de simular el comportamiento de la colonia en presencia de un circuito genético. Para ello, se ha creado un nuevo módulo de regulación genética que maneja las interaciones entre genes y proteínas de cada célula ejecutando respuestas celulares específicas. Dado que en la mayoría de los experimentos intervienen colonias del orden de 105 individuos, es necesario un módulo de regulación genética simplificado que permita representar de la forma más precisa posible este proceso en colonias de tales magnitudes. El módulo genético integrado en GRO se basa en una red booleana, en la que un gen puede transitar entre dos estados, on (expresado) o off (reprimido), y cuya transición viene dada por una serie de reglas lógicas.---ABSTRACT---It is interesting to understand how simple organisms such as Escherichia coli do not have simple mechanisms to respond to the environment in which they find themselves. This response is managed by complicated regulatory networks formed by genes and proteins, where each element of the genetic network should take part in harmony, at the right time and with the right amount to give rise to the appropriate cellular response. Synthetic biology is a new area of biology and technology that combines molecular biology, genetic engineering and computational tools to create biological systems with novel features. The synthetically created systems are already a reality, and increasingly accumulate work around the world showing their feasibility. In this field not only minor changes are made in the genetic information but also genetic circuits designed, manipulated and introduced into the organisms. Currently, it takes great effort to build genetic circuits formed by numerous genes and characterize their interaction with other molecules, their regulation, their expression and their function in different organisms. Most synthetic biology projects that have been developed so far are based on the current knowledge of the functioning of living organisms. However, there is a lot of information and it keeps accumulating, so it requires computational and mathematical tools to integrate and manage this wealth of information. The bacterial colonies simulator, GRO, has the ability to represent the simplest dynamics of cell behavior, such as growth, division and intercellular communication by conjugation, but lacks the ability to simulate the behavior of the colony in the presence of a genetic circuit. To this end, a new genetic regulation module that handles interactions between genes and proteins for each cell running specific cellular responses has been created. Since most experiments involve colonies of about 105 individuals, a simplified genetic module which represent cell dynamics as accurately and simply as possible is needed. The integrated genetic GRO module is based on a Boolean network, in which a gene can be in either of two states, on (expressed) or off (repressed), and whose transition is given by a set of logical rules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present evidence of complex balancing regulation of HTR1B transcription by common polymorphisms in its promoter. Computational analysis of the HTR1B gene predicted that a 50 segment, spanning common DNA sequence variations, T-261G, A-161T, and -182INS/DEL-181, contained a putative functional promoter. Using a secreted alkaline phosphatase (SEAP) reporter gene system, we found that the haplotype -261G_-182INS-181_A-161 enhanced transcriptional activity 2.3-fold compared with the haplotype T-261_-182INS-181_A-161. Conversely, -161T reversed this, and the net effect when -261G and -161T were in the same haplotype (-261G_-182INS-181_-161T) was equivalent to the major haplotype (T-261_-182INS-181_A-161). Electrophoretic mobility shift experiments showed that -261G and -161T modify the binding of transcription factors (TFs): -261G generates a new AP2 binding site, while alleles A-161 and -161T exhibit different binding characteristics to AP1. T-261G and A-161T were found to be in linkage disequilibrium (LD) with G861C in a European ancestry population. Interestingly, G861C has been reported to be associated with several psychiatric disorders. Our results indicate that HTR1B is the target of substantial transcriptional genetic regulation by common haplotypes, which are in LD with the HTR1B single-nucleotide polymorphism (SNP) most commonly used in association studies.