908 resultados para generalized additive models
Resumo:
Atlantic croaker Micropogonias undulatus is a commercially and ecologically important bottom-associated fish that occurs in marine and estuarine systems from Cape Cod, MA to Mexico. I documented the temporal and spatial variability in the diet of Atlantic croaker in Chesapeake Bay and found that in the summer fish, particularly bay anchovies Anchoa mitchilli, make up at least 20% of the diet of croaker by weight. The use of a pelagic food source seems unusual for a bottom-associated fish such as croaker, but appears to be a crepuscular feeding habit that has not been previously detected. Thus, I investigated the bioenergetic consequences of secondary piscivory to the distribution of croaker, to the condition of individuals within the population and to the ecosystem. Generalized additive models revealed that the biomass of anchovy explained some of the variability in croaker occurrence and abundance in Chesapeake Bay. However, physical factors, specifically temperature, salinity, and seasonal dynamics were stronger determinants of croaker distribution than potential prey availability. To better understand the bioenergetic consequences of diet variability at the individual level, I tested the hypothesis that croaker feeding on anchovies would be in better condition than those feeding on polychaetes using a variety of condition measures that operate on multiple time scales, including RNA:DNA, Fulton's condition factor (K), relative weight (Wr), energy density, hepatosomatic index (HSI), and gonadosomatic index (GSI). Of these condition measures, several morphometric measures were significantly positively correlated with each other and with the percentage (by weight) of anchovy in croaker diets, suggesting that the type of prey eaten is important in improving the overall condition of individual croaker. To estimate the bioenergetic consequences of diet variability on growth and consumption in croaker, I developed and validated a bioenergetic model for Atlantic croaker in the laboratory. The application of this model suggested that croaker could be an important competitor with weakfish and striped bass for food resources during the spring and summer when population abundances of these three fishes are high in Chesapeake Bay. Even though anchovies made up a relatively small portion of croaker diet and only at certain times of the year, croaker consumed more anchovy at the population level than striped bass in all simulated years and nearly as much anchovy as weakfish. This indicates that weak trophic interactions between species are important in understanding ecosystem processes and should be considered in ecosystem-based management.
Resumo:
© 2016, Serdi and Springer-Verlag France.Objectives: The association between cognitive function and cholesterol levels is poorly understood and inconsistent results exist among the elderly. The purpose of this study is to investigate the association of cholesterol level with cognitive performance among Chinese elderly. Design: A cross-sectional study was implemented in 2012 and data were analyzed using generalized additive models, linear regression models and logistic regression models. Setting: Community-based setting in eight longevity areas in China. Subjects: A total of 2000 elderly aged 65 years and over (mean 85.8±12.0 years) participated in this study. Measurements: Total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) concentration were determined and cognitive impairment was defined as Mini-Mental State Examination (MMSE) score≤23. Results: There was a significant positive linear association between TC, TG, LDL-C, HDL-C and MMSE score in linear regression models. Each 1 mmol/L increase in TC, TG, LDL-C and HDL-C corresponded to a decreased risk of cognitive impairment in logistic regression models. Compared with the lowest tertile, the highest tertile of TC, LDL-C and HDL-C had a lower risk of cognitive impairment. The adjusted odds ratios and 95% CI were 0.73(0.62–0.84) for TC, 0.81(0.70–0.94) for LDL-C and 0.81(0.70–0.94) for HDL-C. There was no gender difference in the protective effects of high TC and LDL-C levels on cognitive impairment. However, for high HDL-C levels the effect was only observed in women. High TC, LDL-C and HDL-C levels were associated with lower risk of cognitive impairment in the oldest old (aged 80 and older), but not in the younger elderly (aged 65 to 79 years). Conclusions: These findings suggest that cholesterol levels within the high normal range are associated with better cognitive performance in Chinese elderly, specifically in the oldest old. With further validation, low cholesterol may serve a clinical indicator of risk for cognitive impairment in the elderly.
Resumo:
The development of population models able to reproduce the dynamics of zooplankton is a central issue when trying to understand how a changing environment would affect zooplankton in the future. Using 10 years of monthly data on phytoplankton and zooplankton abundance in the Bay of Biscay from the IEO's RADIALES time-series programme, we built non-parametric Generalized Additive Models (GAMs) able to reproduce the dynamics of plankton on the basis of environmental factors (nutrients, temperature, upwelling and photoperiod). We found that the interaction between these two plankton components is approximately linear, whereas the effects of environmental factors are non-linear. With the inclusion of the environmental variability, the main seasonal and inter-annual dynamic patterns observed within the studied plankton assemblage indicate the prevalence of bottom-up regulatory control. The statistically deduced models were used to simulate the dynamics of the phytoplankton and zooplankton. A good agreement between observations and simulations was obtained, especially for zooplankton. We are presently developing spatio-temporal GAM models for the North Sea based on the Continuous Plankton Recorder database.
Resumo:
The effect of environmental variables on blue shark Prionace glauca catch per unit effort (CPUE) in a recreational fishery in the western English Channel, between June and September 1998–2011, was quantified using generalized additive models (GAMs). Sea surface temperature (SST) explained 1·4% of GAM deviance, and highest CPUE occurred at 16·7° C, reflecting the optimal thermal preferences of this species. Surface chlorophyll a concentration (CHL) significantly affected CPUE and caused 27·5% of GAM deviance. Additionally, increasing CHL led to rising CPUE, probably due to higher productivity supporting greater prey biomass. The density of shelf-sea tidal mixing fronts explained 5% of GAM deviance, but was non-significant, with increasing front density negatively affecting CPUE. Time-lagged frontal density significantly affected CPUE, however, causing 12·6% of the deviance in a second GAM and displayed a positive correlation. This outcome suggested a delay between the evolution of frontal features and the subsequent accumulation of productivity and attraction of higher trophic level predators, such as P. glauca.
Resumo:
The effect of environmental variables on blue shark Prionace glauca catch per unit effort (CPUE) in a recreational fishery in the western English Channel, between June and September 1998–2011, was quantified using generalized additive models (GAMs). Sea surface temperature (SST) explained 1·4% of GAM deviance, and highest CPUE occurred at 16·7° C, reflecting the optimal thermal preferences of this species. Surface chlorophyll a concentration (CHL) significantly affected CPUE and caused 27·5% of GAM deviance. Additionally, increasing CHL led to rising CPUE, probably due to higher productivity supporting greater prey biomass. The density of shelf-sea tidal mixing fronts explained 5% of GAM deviance, but was non-significant, with increasing front density negatively affecting CPUE. Time-lagged frontal density significantly affected CPUE, however, causing 12·6% of the deviance in a second GAM and displayed a positive correlation. This outcome suggested a delay between the evolution of frontal features and the subsequent accumulation of productivity and attraction of higher trophic level predators, such as P. glauca.
Resumo:
The oceanographic drivers of marine vertebrate habitat use are poorly understood yet fundamental to our knowledge of marine ecosystem functioning. Here, we use composite front mapping and high-resolution GPS tracking to determine the significance of mesoscale oceanographic fronts as physical drivers of foraging habitat selection in northern gannets Morus bassanus. We tracked 66 breeding gannets from a Celtic Sea colony over 2 years and used residence time to identify area-restricted search (ARS) behaviour. Composite front maps identified thermal and chlorophyll-a mesoscale fronts at two different temporal scales—(i) contemporaneous fronts and (ii) seasonally persistent frontal zones. Using generalized additive models (GAMs), with generalized estimating equations (GEE-GAMs) to account for serial autocorrelation in tracking data, we found that gannets do not adjust their behaviour in response to contemporaneous fronts. However, ARS was more likely to occur within spatially predictable, seasonally persistent frontal zones (GAMs). Our results provide proof of concept that composite front mapping is a useful tool for studying the influence of oceanographic features on animal movements. Moreover, we highlight that frontal persistence is a crucial element of the formation of pelagic foraging hotspots for mobile marine vertebrates.
Resumo:
Advances in habitat and climate modelling allow us to reduce uncertainties of climate change impacts on species distribution. We evaluated the impacts of future climate change on community structure, diversity, distribution and phenology of 14 copepod species in the North Atlantic. We developed and validated habitat models for key zooplankton species using continuous plankton recorder (CPR) survey data collected at mid latitudes of the North Atlantic. Generalized additive models (GAMs) were applied to relate the occurrence of species to environmental variables. Models were projected to future (2080–2099) environmental conditions using coupled hydroclimatix–biogeochemical models under the Intergovernmental Panel on Climate Change (IPCC) A1B climate scenario, and compared to present (2001–2020) conditions. Our projections indicated that the copepod community is expected to respond substantially to climate change: a mean poleward latitudinal shift of 8.7 km per decade for the overall community with an important species range variation (–15 to 18 km per decade); the species seasonal peak is expected to occur 12–13 d earlier for Calanus finmarchicus and C. hyperboreus; and important changes in community structure are also expected (high species turnover of 43–79% south of the Oceanic Polar Front). The impacts of the change expected by the end of the century under IPCC global warming scenarios on copepods highlight poleward shifts, earlier seasonal peak and changes in biodiversity spatial patterns that might lead to alterations of the future North Atlantic pelagic ecosystem. Our model and projections are supported by a temporal validation undertaken using the North Atlantic climate regime shift that occurred in the 1980s: the habitat model built in the cold period (1970–1986) has been validated in the warm period (1987–2004).
Resumo:
Identifying processes that shape species geographical ranges is a prerequisite for understanding environmental change. Currently, species distribution modelling methods do not offer credible statistical tests of the relative influence of climate factors and typically ignore other processes (e.g. biotic interactions and dispersal limitation). We use a hierarchical model fitted with Markov Chain Monte Carlo to combine ecologically plausible niche structures using regression splines to describe unimodal but potentially skewed response terms. We apply spatially explicit error terms that account for (and may help identify) missing variables. Using three example distributions of European bird species, we map model results to show sensitivity to change in each covariate. We show that the overall strength of climatic association differs between species and that each species has considerable spatial variation in both the strength of the climatic association and the sensitivity to climate change. Our methods are widely applicable to many species distribution modelling problems and enable accurate assessment of the statistical importance of biotic and abiotic influences on distributions.
Resumo:
Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Thesis written in co-mentorship with Robert Michaud.
Resumo:
In recent years, some epidemiologic studies have attributed adverse effects of air pollutants on health not only to particles and sulfur dioxide but also to photochemical air pollutants (nitrogen dioxide and ozone). The effects are usually small, leading to some inconsistencies in the results of the studies. Furthermore, the different methodologic approaches of the studies used has made it difficult to derive generic conclusions. We provide here a quantitative summary of the short-term effects of photochemical air pollutants on mortality in seven Spanish cities involved in the EMECAM project, using generalized additive models from analyses of single and multiple pollutants. Nitrogen dioxide and ozone data were provided by seven EMECAM cities (Barcelona, Gijón, Huelva, Madrid, Oviedo, Seville, and Valencia). Mortality indicators included daily total mortality from all causes excluding external causes, daily cardiovascular mortality, and daily respiratory mortality. Individual estimates, obtained from city-specific generalized additive Poisson autoregressive models, were combined by means of fixed effects models and, if significant heterogeneity among local estimates was found, also by random effects models. Significant positive associations were found between daily mortality (all causes and cardiovascular) and NO2, once the rest of air pollutants were taken into account. A 10 μg/m3 increase in the 24-hr average 1-day NO2 level was associated with an increase in the daily number of deaths of 0.43% [95% confidence interval(CI), –0.003–0.86%] for all causes excluding external. In the case of significant relationships, relative risks for cause-specific mortality were nearly twice as much as that for total mortality for all the photochemical pollutants. Ozone was independently related only to cardiovascular daily mortality. No independent statistically significant relationship between photochemical air pollutants and respiratory mortality was found. The results in this study suggest that, given the present levels of photochemical pollutants, people living in Spanish cities are exposed to health risks derived from air pollution
Resumo:
Objective. To investigate the short-term effects of exposure to particulate matter from biomass burning in the Amazon on the daily demand for outpatient care due to respiratory diseases in children and the elderly. Methods. Epidemiologic study with ecologic time series design. Daily consultation records were obtained from the 14 primary health care clinics in the municipality of Alta Floresta, state of Mato Grosso, in the southern region of the Brazilian Amazon, between January 2004 and December 2005. Information on the daily levels of fine particulate matter was made available by the Brazilian National Institute for Spatial Research. To control for confounding factors ( situations in which a non-causal association between exposure and disease is observed due to a third variable), variables related to time trends, seasonality, temperature, relative humidity, rainfall, and calendar effects ( such as occurrence of holidays and weekends) were included in the model. Poisson regression with generalized additive models was used. Results. A 10 mu g/m(3) increase in the level of exposure to particulate matter was associated with increases of 2.9% and 2.6% in outpatient consultations due to respiratory diseases in children on the 6th and 7th days following exposure. Significant associations were not observed for elderly individuals. Conclusions. The results suggest that the levels of particulate matter from biomass burning in the Amazon are associated with adverse effects on the respiratory health of children.
Resumo:
The central aims of this study were: (1) to construct age- and gender-specific percentiles for motor coordination (MC), (2) to analyze the change, stability, and prediction of MC, (3) to investigate the relationship between motor performance and body fatness, and (4) to evaluate the relationships between skeletal maturation and fundamental motor skills (FMS) and MC. The data collected was from the ‘Healthy Growth of Madeira Children Study’ and from the ‘Madeira Child Growth Study’. In these studies, MC, FMS, skeletal age, growth characteristics, motor performance, physical activity, socioeconomic status, and geographical area were assessed/measured. Generalized additive models for location, scale and shape, mixed between-within subjects ANOVA, multilevel models, and hierarchical regression (blocks) were some of the statistical procedures used in the analyses. Scores on walking backwards and moving sideways improved with age. It was also found that boys performed better than girls on moving sideways. Normal-weight children outperformed obese peers in almost all gross MC tests. Inter-age correlations were calculated to be between 0.15 and 0.60. Age was associated with a better performance in catching, scramble, speed run, standing long jump, balance, and tennis ball throwing. Body mass index was positively associated with scramble and speed run, and negatively related to the standing long jump. Physical activity was negatively associated with scramble. Semi-urban children displayed better catching skills relative to their urban peers. The standardized residual of skeletal age on chronological age (SAsr) and its interaction with stature and/or body mass accounted for the maximum of 7.0% of variance in FMS and MC over that attributed to body size per se. SAsr alone accounted for a maximum of 9.0% variance in FMS and MC over that attributed to body size per se and interactions between SAsr and body size. This study demonstrates the need to promote FMS, MC, motor performance, and physical activity in children.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)