980 resultados para general-relativity
Resumo:
The general structure of a metric-torsion theory of gravitation allows a parity-violating contribution to the complete action which is linear in the curvature tensor and vanishes identically in the absence of torsion. The resulting action involves, apart from the constant ¯K E =8pgr/c4, a coupling (B) which governs the strength of the parity interaction mediated by torsion. In this model the Brans-Dicke scalar field generates the torsion field, even though it has zero spin. The interesting consequence of the theory is that its results for the solar-system differ very little from those obtained from Brans-Dicke (BD) theory. Therefore the theory is indistinguishable from BD theory in solar-system experiments.
Resumo:
Here we extend the exploration of significantly super-Chandrasekhar magnetized white dwarfs by numerically computing axisymmetric stationary equilibria of differentially rotating magnetized polytropic compact stars in general relativity (GR), within the ideal magnetohydrodynamic regime. We use a general relativistic magnetohydrodynamic (GRMHD) framework that describes rotating and magnetized axisymmetric white dwarfs, choosing appropriate rotation laws and magnetic field profiles (toroidal and poloidal). The numerical procedure for finding solutions in this framework uses the 3 + 1 formalism of numerical relativity, implemented in the open source XNS code. We construct equilibrium sequences by varying different physical quantities in turn, and highlight the plausible existence of super-Chandrasekhar white dwarfs, with masses in the range of 2-3 solar mass, with central (deep interior) magnetic fields of the order of 10(14) G and differential rotation with surface time periods of about 1-10 s. We note that such white dwarfs are candidates for the progenitors of peculiar, overluminous Type Ia supernovae, to which observational evidence ascribes mass in the range 2.1-2.8 solar mass. We also present some interesting results related to the structure of such white dwarfs, especially the existence of polar hollows in special cases.
Resumo:
54 p.
Resumo:
This thesis presents recent research into analytic topics in the classical theory of General Relativity. It is a thesis in two parts. The first part features investigations into the spectrum of perturbed, rotating black holes. These include the study of near horizon perturbations, leading to a new generic frequency mode for black hole ringdown; an treatment of high frequency waves using WKB methods for Kerr black holes; and the discovery of a bifurcation of the quasinormal mode spectrum of rapidly rotating black holes. These results represent new discoveries in the field of black hole perturbation theory, and rely on additional approximations to the linearized field equations around the background black hole. The second part of this thesis presents a recently developed method for the visualization of curved spacetimes, using field lines called the tendex and vortex lines of the spacetime. The works presented here both introduce these visualization techniques, and explore them in simple situations. These include the visualization of asymptotic gravitational radiation; weak gravity situations with and without radiation; stationary black hole spacetimes; and some preliminary study into numerically simulated black hole mergers. The second part of thesis culminates in the investigation of perturbed black holes using these field line methods, which have uncovered new insights into the dynamics of curved spacetime around black holes.
Resumo:
The theories of relativity and quantum mechanics, the two most important physics discoveries of the 20th century, not only revolutionized our understanding of the nature of space-time and the way matter exists and interacts, but also became the building blocks of what we currently know as modern physics. My thesis studies both subjects in great depths --- this intersection takes place in gravitational-wave physics.
Gravitational waves are "ripples of space-time", long predicted by general relativity. Although indirect evidence of gravitational waves has been discovered from observations of binary pulsars, direct detection of these waves is still actively being pursued. An international array of laser interferometer gravitational-wave detectors has been constructed in the past decade, and a first generation of these detectors has taken several years of data without a discovery. At this moment, these detectors are being upgraded into second-generation configurations, which will have ten times better sensitivity. Kilogram-scale test masses of these detectors, highly isolated from the environment, are probed continuously by photons. The sensitivity of such a quantum measurement can often be limited by the Heisenberg Uncertainty Principle, and during such a measurement, the test masses can be viewed as evolving through a sequence of nearly pure quantum states.
The first part of this thesis (Chapter 2) concerns how to minimize the adverse effect of thermal fluctuations on the sensitivity of advanced gravitational detectors, thereby making them closer to being quantum-limited. My colleagues and I present a detailed analysis of coating thermal noise in advanced gravitational-wave detectors, which is the dominant noise source of Advanced LIGO in the middle of the detection frequency band. We identified the two elastic loss angles, clarified the different components of the coating Brownian noise, and obtained their cross spectral densities.
The second part of this thesis (Chapters 3-7) concerns formulating experimental concepts and analyzing experimental results that demonstrate the quantum mechanical behavior of macroscopic objects - as well as developing theoretical tools for analyzing quantum measurement processes. In Chapter 3, we study the open quantum dynamics of optomechanical experiments in which a single photon strongly influences the quantum state of a mechanical object. We also explain how to engineer the mechanical oscillator's quantum state by modifying the single photon's wave function.
In Chapters 4-5, we build theoretical tools for analyzing the so-called "non-Markovian" quantum measurement processes. Chapter 4 establishes a mathematical formalism that describes the evolution of a quantum system (the plant), which is coupled to a non-Markovian bath (i.e., one with a memory) while at the same time being under continuous quantum measurement (by the probe field). This aims at providing a general framework for analyzing a large class of non-Markovian measurement processes. Chapter 5 develops a way of characterizing the non-Markovianity of a bath (i.e.,whether and to what extent the bath remembers information about the plant) by perturbing the plant and watching for changes in the its subsequent evolution. Chapter 6 re-analyzes a recent measurement of a mechanical oscillator's zero-point fluctuations, revealing nontrivial correlation between the measurement device's sensing noise and the quantum rack-action noise.
Chapter 7 describes a model in which gravity is classical and matter motions are quantized, elaborating how the quantum motions of matter are affected by the fact that gravity is classical. It offers an experimentally plausible way to test this model (hence the nature of gravity) by measuring the center-of-mass motion of a macroscopic object.
The most promising gravitational waves for direct detection are those emitted from highly energetic astrophysical processes, sometimes involving black holes - a type of object predicted by general relativity whose properties depend highly on the strong-field regime of the theory. Although black holes have been inferred to exist at centers of galaxies and in certain so-called X-ray binary objects, detecting gravitational waves emitted by systems containing black holes will offer a much more direct way of observing black holes, providing unprecedented details of space-time geometry in the black-holes' strong-field region.
The third part of this thesis (Chapters 8-11) studies black-hole physics in connection with gravitational-wave detection.
Chapter 8 applies black hole perturbation theory to model the dynamics of a light compact object orbiting around a massive central Schwarzschild black hole. In this chapter, we present a Hamiltonian formalism in which the low-mass object and the metric perturbations of the background spacetime are jointly evolved. Chapter 9 uses WKB techniques to analyze oscillation modes (quasi-normal modes or QNMs) of spinning black holes. We obtain analytical approximations to the spectrum of the weakly-damped QNMs, with relative error O(1/L^2), and connect these frequencies to geometrical features of spherical photon orbits in Kerr spacetime. Chapter 11 focuses mainly on near-extremal Kerr black holes, we discuss a bifurcation in their QNM spectra for certain ranges of (l,m) (the angular quantum numbers) as a/M → 1. With tools prepared in Chapter 9 and 10, in Chapter 11 we obtain an analytical approximate for the scalar Green function in Kerr spacetime.
Resumo:
This thesis presents a study of the dynamical, nonlinear interaction of colliding gravitational waves, as described by classical general relativity. It is focused mainly on two fundamental questions: First, what is the general structure of the singularities and Killing-Cauchy horizons produced in the collisions of exactly plane-symmetric gravitational waves? Second, under what conditions will the collisions of almost-plane gravitational waves (waves with large but finite transverse sizes) produce singularities?
In the work on the collisions of exactly-plane waves, it is shown that Killing horizons in any plane-symmetric spacetime are unstable against small plane-symmetric perturbations. It is thus concluded that the Killing-Cauchy horizons produced by the collisions of some exactly plane gravitational waves are nongeneric, and that generic initial data for the colliding plane waves always produce "pure" spacetime singularities without such horizons. This conclusion is later proved rigorously (using the full nonlinear theory rather than perturbation theory), in connection with an analysis of the asymptotic singularity structure of a general colliding plane-wave spacetime. This analysis also proves that asymptotically the singularities created by colliding plane waves are of inhomogeneous-Kasner type; the asymptotic Kasner axes and exponents of these singularities in general depend on the spatial coordinate that runs tangentially to the singularity in the non-plane-symmetric direction.
In the work on collisions of almost-plane gravitational waves, first some general properties of single almost-plane gravitational-wave spacetimes are explored. It is shown that, by contrast with an exact plane wave, an almost-plane gravitational wave cannot have a propagation direction that is Killing; i.e., it must diffract and disperse as it propagates. It is also shown that an almost-plane wave cannot be precisely sandwiched between two null wavefronts; i.e., it must leave behind tails in the spacetime region through which it passes. Next, the occurrence of spacetime singularities in the collisions of almost-plane waves is investigated. It is proved that if two colliding, almost-plane gravitational waves are initially exactly plane-symmetric across a central region of sufficiently large but finite transverse dimensions, then their collision produces a spacetime singularity with the same local structure as in the exact-plane-wave collision. Finally, it is shown that a singularity still forms when the central regions are only approximately plane-symmetric initially. Stated more precisely, it is proved that if the colliding almost-plane waves are initially sufficiently close to being exactly plane-symmetric across a bounded central region of sufficiently large transverse dimensions, then their collision necessarily produces spacetime singularities. In this case, nothing is now known about the local and global structures of the singularities.
Resumo:
General Relativity predicts the existence of gravitational waves, which carry information about the physical and dynamical properties of their source. One of the many promising sources of gravitational waves observable by ground-based instruments, such as in LIGO and Virgo, is the coalescence of two compact objects (neutron star or black hole). Black holes and neutron stars sometimes form binaries with short orbital periods, radiating so strongly in gravitational waves that they coalesce on astrophysically short timescales. General Relativity gives precise predictions for the form of the signal emitted by these systems. The most recent searches for theses events used waveform models that neglected the effects of black hole and neutron star spin. However, real astrophysical compact objects, especially black holes, are expected to have large spins. We demonstrate here a data analysis infrastructure which achieves an improved sensitivity to spinning compact binaries by the inclusion of spin effects in the template waveforms. This infrastructure is designed for scalable, low-latency data analysis, ideal for rapid electromagnetic followup of gravitational wave events.
Resumo:
In Part I, we construct a symmetric stress-energy-momentum pseudo-tensor for the gravitational fields of Brans-Dicke theory, and use this to establish rigorously conserved integral expressions for energy-momentum Pi and angular momentum Jik. Application of the two-dimensional surface integrals to the exact static spherical vacuum solution of Brans leads to an identification of our conserved mass with the active gravitational mass. Application to the distant fields of an arbitrary stationary source reveals that Pi and Jik have the same physical interpretation as in general relativity. For gravitational waves whose wavelength is small on the scale of the background radius of curvature, averaging over several wavelengths in the Brill-Hartle-Isaacson manner produces a stress-energy-momentum tensor for gravitational radiation which may be used to calculate the changes in Pi and Jik of their source.
In Part II, we develop strong evidence in favor of a conjecture by Penrose--that, in the Brans-Dicke theory, relativistic gravitational collapse in three dimensions produce black holes identical to those of general relativity. After pointing out that any black hole solution of general relativity also satisfies Brans-Dicke theory, we establish the Schwarzschild and Kerr geometries as the only possible spherical and axially symmetric black hole exteriors, respectively. Also, we show that a Schwarzschild geometry is necessarily formed in the collapse of an uncharged sphere.
Appendices discuss relationships among relativistic gravity theories and an example of a theory in which black holes do not exist.
Resumo:
The equations of relativistic, perfect-fluid hydrodynamics are cast in Eulerian form using six scalar "velocity-potential" fields, each of which has an equation of evolution. These equations determine the motion of the fluid through the equation
Uʋ=µ-1 (ø,ʋ + αβ,ʋ + ƟS,ʋ).
Einstein's equations and the velocity-potential hydrodynamical equations follow from a variational principle whose action is
I = (R + 16π p) (-g)1/2 d4x,
where R is the scalar curvature of spacetime and p is the pressure of the fluid. These equations are also cast into Hamiltonian form, with Hamiltonian density –T00 (-goo)-1/2.
The second variation of the action is used as the Lagrangian governing the evolution of small perturbations of differentially rotating stellar models. In Newtonian gravity this leads to linear dynamical stability criteria already known. In general relativity it leads to a new sufficient condition for the stability of such models against arbitrary perturbations.
By introducing three scalar fields defined by
ρ ᵴ = ∇λ + ∇x(xi + ∇xɣi)
(where ᵴ is the vector displacement of the perturbed fluid element, ρ is the mass-density, and i, is an arbitrary vector), the Newtonian stability criteria are greatly simplified for the purpose of practical applications. The relativistic stability criterion is not yet in a form that permits practical calculations, but ways to place it in such a form are discussed.
Resumo:
We construct an F(R) gravity theory corresponding to the Weyl invariant two scalar field theory. We investigate whether such F (R) gravity can have the antigravity regions where the Weyl curvature invariant does not diverge at the Big Bang and Big Crunch singularities. It is revealed that the divergence cannot be evaded completely but can be much milder than that in the original Weyl invariant two scalar field theory. (C) 2014 The Authors. Published by Elsevier B.V.
Resumo:
Gravitational waves, as predicted by Einstein's general relativity theory, appear as ripples in the fabric of spacetime traveling at the speed of light. We prove that the propagation of small amplitude gravitational waves in a curved spacetime is equivalent to the propagation of a subspace of electromagnetic states. We use this result to propose the use of entangled photons to emulate the evolution of gravitational waves in curved spacetimes by means of experimental electromagnetic setups featuring metamaterials.
Resumo:
Neste trabalho foi feito um estudo do limite de Karlhede para ondas pp. Para este fim, uma revisão rigorosa de Geometria Diferencial foi apresentada numa abordagem independente de sistemas de coordenadas. Além da abordagem usual, a curvatura de uma variedade riemanniana foi reescrita usando os formalismos de referenciais, formas diferenciais e espinores do grupo de Lorentz. O problema de equivalência para geometrias riemannianas foi formulado e as peculiaridades de sua aplicação é a Relatividade Geral são delineadas. O limite teórico de Karlhede para espaços-tempo de vácuo de tipo Petrov N foi apresentado. Esse limite é estudado na prática usando técnicas espinores e as condições para sua existência são resolvidas sem a introdução de sistemas de coordenadas.
Resumo:
O objetivo desta tese é verificar se algumas soluções de matéria da teoria da relatividade geral também satisfazem as equações da teoria de Horava-Lifshitz no limite infravermelho. Para isso, partimos das soluções mais simples possíveis, tais como é o caso de um fluido de radiação nula e de poeira, conhecidas na relatividade geral, e encontramos que estas não correspondem a quaisquer soluções na teoria de gravitação de Hořava-Lifshitz para o limite de baixas energias, infravermelho, no qual esta teoria deveria se reduzir à anterior. Este resultado nos remete a novos desafios na direção de ajustes teóricos que permitam que esta teoria descreva corretamente tanto o cenário cosmológico quanto o de formação de estruturas, estáveis ou colapsadas. Para tornar o trabalho mais claro, é feita uma introdução à teoria de Hořava- Lifshitz, tema central deste trabalho, e como ela se acopla com a matéria.
Resumo:
We derive the generalized Friedmann equation governing the cosmological evolution inside the thick brane model in the presence of two curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. We find two effective four-dimensional reductions of the generalized Friedmann equation in some limits and demonstrate that the reductions but not the generalized Friedmann equation can be rewritten as the first law of equilibrium thermodynamics on the apparent horizon of thick braneworld.