962 resultados para gene-environment interaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies have led to the hypothesis that major risk factors for developing diseases such as hypertension, cardiovascular disease and adult-onset diabetes are established during development. This developmental programming hypothesis proposes that exposure to an adverse stimulus or insult at critical, sensitive periods of development can induce permanent alterations in normal physiological processes that lead to increased disease risk later in life. For cancer, inheritance of a tumor suppressor gene defect confers a high relative risk for disease development. However, these defects are rarely 100% penetrant. Traditionally, gene-environment interactions are thought to contribute to the penetrance of tumor suppressor gene defects by facilitating or inhibiting the acquisition of additional somatic mutations required for tumorigenesis. The studies presented herein identify developmental programming as a distinctive type of gene-environment interaction that can enhance the penetrance of a tumor suppressor gene defect in adult life. Using rats predisposed to uterine leiomyoma due to a germ-line defect in one allele of the tuberous sclerosis complex 2 (Tsc-2) tumor suppressor gene, these studies show that early-life exposure to the xenoestrogen, diethylstilbestrol (DES), during development of the uterus increased tumor incidence, multiplicity and size in genetically predisposed animals, but failed to induce tumors in wild-type rats. Uterine leiomyomas are ovarian-hormone dependent tumors that develop from the uterine myometrium. DES exposure was shown to developmentally program the myometrium, causing increased expression of estrogen-responsive genes prior to the onset of tumors. Loss of function of the normal Tsc-2 allele remained the rate-limiting event for tumorigenesis; however, tumors that developed in exposed animals displayed an enhanced proliferative response to ovarian steroid hormones relative to tumors that developed in unexposed animals. Furthermore, the studies presented herein identify developmental periods during which target tissues are maximally susceptible to developmental programming. These data suggest that exposure to environmental factors during critical periods of development can permanently alter normal physiological tissue responses and thus lead to increased disease risk in genetically susceptible individuals. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate whether an incongruence between personality characteristics of individuals and concomitant charcteristics of health professional training environments on salient dimensions contributes to aspects of mental health. The dimensions examined were practical-theoretical orientation and the degree of structure-unstructure. They were selected for study as they are particularly important attributes of students and of learning environments. It was proposed that when the demand of the environment is disparate from the proclivities of the individual, strain arises. This strain was hypothesized to contribute to anxiety, depression, and subjective distress.^ Select subscales on the Omnibus Personality Inventory (OPI) were the operationalized measures for the personality component of the dimensions studied. An environmental index was developed to assess students' perceptions of the learning environment on these same dimensions. The Beck Depression Inventory, State-Trait Anxiety Inventory and General Well-Being schedule measured the outcome variables.^ A congruence model was employed to determine person-environment (P-E) interaction. Scores on the scales of the OPI and the environmental index were divided into high, medium, and low based on the range of scores. Congruence was defined as a match between the level of personality need and the complementary level of the perception of the environment. Alternatively, incongruence was defined as a mismatch between the person and the environment. The consistent category was compared to the inconsistent categories by an analysis of variance procedure. Furthermore, analyses of covariance were conducted with perceived supportiveness of the learning environment and life events external to the learning environment as the covariates. These factors were considered critical influences affecting the outcome measures.^ One hundred and eighty-five students (49% of the population) at the College of Optometry at the University of Houston participated in the study. Students in all four years of the program were equally represented in the study. However, the sample differed from the total population on representation by sex, marital status, and undergraduate major.^ The results of the study did not support the hypotheses. Further, after having adjusted for perceived supportiveness and life events external to the learning environment, there were no statistically significant differences between the congruent category and incongruent categories. Means indicated than the study sample experienced significantly lower depression and subjective distress than the normative samples.^ Results are interpreted in light of their utility for future study design in the investigation of the effects of P-E interaction. Emphasized is the question of the feasibility of testing a P-E interaction model with extant groups. Recommendations for subsequent research are proposed in light of the exploratory nature of the methodology. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial learning requires the septohippocampal pathway. The interaction of learning experience with gene products to modulate the function of a pathway may underlie use-dependent plasticity. The regulated release of nerve growth factor (NGF) from hippocampal cultures and hippocampus, as well as its actions on cholinergic septal neurons, suggest it as a candidate protein to interact with a learning experience. A method was used to evaluate NGF gene-experience interaction on the septohippocampal neural circuitry in mice. The method permits brain region-specific expression of a new gene by using a two-component approach: a virus vector directing expression of cre recombinase; and transgenic mice carrying genomic recombination substrates rendered transcriptionally inactive by a “floxed” stop cassette. Cre recombinase vector delivery into transgenic mouse hippocampus resulted in recombination in 30% of infected cells and the expression of a new gene in those cells. To examine the interaction of the NGF gene and experience, adult mice carrying a NGF transgene with a floxed stop cassette (NGFXAT) received a cre recombinase vector to produce localized unilateral hippocampal NGF gene expression, so-called “activated” mice. Activated and control nonactivated NGFXAT mice were subjected to different experiences: repeated spatial learning, repeated rote performance, or standard vivarium housing. Latency, the time to complete the learning task, declined in the repeated spatial learning groups. The measurement of interaction between NGF gene expression and experience on the septohippocampal circuitry was assessed by counting retrogradely labeled basal forebrain cholinergic neurons projecting to the hippocampal site of NGF gene activation. Comparison of all NGF activated groups revealed a graded effect of experience on the septohippocampal pathway, with the largest change occurring in activated mice provided with repeated learning experience. These data demonstrate that plasticity of the adult spatial learning circuitry can be robustly modulated by experience-dependent interactions with a specific hippocampal gene product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnitude and nature of genotype-by-environment interactions (G×E) for grain yield (GY) and days to flower (DTF) in Cambodia were examined using a random population of 34 genotypes taken from the Cambodian rice improvement program. These genotypes were evaluated in multi-environment trials (MET) conducted across three years (2000 to 2002) and eight locations in the rainfed lowlands. The G×E interaction was partitioned into components attributed to genotype-by-location (G×L), genotype-by-year (G×Y) and genotype-by-location-by-year (G×L×Y) interactions. The G×L×Y interaction was the largest component of variance for GY. The G×L interaction was also significant and comparable in size to the genotypic component (G). The G×Y interaction was small and non significant. A major factor contributing to the large G×L×Y interactions for GY was the genotypic variation for DTF in combination with environmental variation for the timing and intensity of drought. Some of the interactions for GY associated with timing of plant development and exposure to drought were repeatable across the environments enabling the identification of three-target populations of environments (TPE) for consideration in the breeding program. Four genotypes were selected for wide adaptation in the rainfed lowlands in Cambodia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectrum Disorder (ASD), is a heterogeneous neurodevelopmental disorder with na estimated global prevalence rate of 17:10000, and a male to female ratio of 4:1. Patients with ASD presente language and communication difficulties and stereotyped behaviours. Comorbidity with other disorders, such as Intelectual Disability, Fragile-X syndrome (FXS) epilepsy and tuberous sclerosis frequently occurs. ASD presents amultifactorial etiopathology, and genetic factos alone are not suficiente to explain how the syndrome arises, with recente studies establishing ASD heritability at approximately 50%. Pre-, peri- and post-natal exposure to toxic environmental factos has been implicated in the development of ASD. Involvement of epigenetic regulatory mechanisms has been suggested, supported by the occurrence of autistic symptoms in patients with disorders aris ing from epigenetic mutations, such as FXS. A polygenic and epistatic model is a strong hypothesis to explain ASD. The main goal of this project is to identify specific exposure patterns to environmental toxicants in children diagnosed with ASD and integrate the results with genetic and epigenetic data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inherited genetic traits co-determine the susceptibility of an individual to a toxic chemical. Special emphasis has been put on individual responses to environmental and industrial carcinogens, but other chronic diseases are of increasing interest. Polymorphisms of relevant xenobiotic metabolising enzymes may be used as toxicological susceptibility markers. A growing number of genes encoding enzymes involved in biotransformation of toxicants and in cellular defence against toxicant-induced damage to the cells has been identified and cloned, leading to increased knowledge of allelic variants of genes and genetic defects that may result in a differential susceptibility toward environmental toxicants. "Low penetrating" polymorphisms in metabolism genes tend to be much more common in the population than allelic variants of "high penetrating" cancer genes, and are therefore of considerable importance from a public health point of view. Positive associations between cancer and CYP1A1 alleles, in particular the *2C I462V allele, were found for tissues following the aerodigestive tract. Again, in most cases, the effect of the variant CYP1A1 allele becomes apparent or clearer in connection with the GSTM1 null allele. The CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squameous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has also pointed to interactive effects. Of particular interest for the industrial and environmental field is the isozyme CYP2E1. Several genotypes of this isozyme have been characterised which seem to be associated with different levels of expression of enzyme activity. The acetylator status for NAT2 can be determined by genotyping or by phenotyping. In the pathogenesis of human bladder cancer due to occupational exposure to "classical" aromatic amines (benzidine, 4-aminodiphenyl, 1-naphthylamine) acetylation by NAT2 is regarded as a detoxication step. Interestingly, the underlying European findings of a higher susceptibility of slow acetylators towards aromatic amines are in contrast to findings in Chinese workers occupationally exposed to aromatic amines which points to different mechanisms of susceptibility between European and Chinese populations. Regarding human bladder cancer, the hypothesis has been put forward that genetic polymorphism of GSTM1 might be linked with the occurrence of this tumour type. This supports the hypothesis that exposure to PAH might causally be involved in urothelial cancers. The human polymorphic GST catalysing conjugation of halomethanes, dihalomethanes, ethylene oxide and a number of other industrial compounds could be characterised as a class theta enzyme (GSTT1) by means of molecular biology. "Conjugator" and "non-conjugator" phenotypes are coincident with the presence and absence of the GSTT1 gene. There are wide variations in the frequencies of GSTT1 deletion (GSTT1 *0/0) among different ethnicities. Human phenotyping is facilitated by the GST activity towards methyl bromide or ethylene oxide in erythrocytes which is representative of the metabolic GSTT1 competence of the entire organism. Inter-individual variations in xenobiotic metabolism capacities may be due to polymorphisms of the genes coding for the enzymes themselves or of the genes coding for the receptors or transcription factors which regulate the expression of the enzymes. Also, polymorphisms in several regions of genes may cause altered ligand affinity, transactivation activity or expression levels of the receptor subsequently influencing the expression of the downstream target genes. Studies of individual susceptibility to toxicants and gene-environment interaction are now emerging as an important component of molecular epidemiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

White matter microstructure is under strong genetic control, yet it is largely unknown how genetic influences change from childhood into adulthood. In one of the largest brain mapping studies ever performed, we determined whether the genetic control over white matter architecture depends on age, sex, socioeconomic status (SES), and intelligence quotient (IQ). We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4-Tesla), in 705 twins and their siblings (age range 12-29; 290. M/415. F). White matter integrity was quantified using a widely accepted measure, fractional anisotropy (FA). We fitted gene-environment interaction models pointwise, to visualize brain regions where age, sex, SES and IQ modulate heritability of fiber integrity. We hypothesized that environmental factors would start to outweigh genetic factors during late childhood and adolescence. Genetic influences were greater in adolescence versus adulthood, and greater in males than in females. Socioeconomic status significantly interacted with genes that affect fiber integrity: heritability was higher in those with higher SES. In people with above-average IQ, genetic factors explained over 80% of the observed FA variability in the thalamus, genu, posterior internal capsule, and superior corona radiata. In those with below-average IQ, however, only around 40% FA variability in the same regions was attributable to genetic factors. Genes affect fiber integrity, but their effects vary with age, sex, SES and IQ. Gene-environment interactions are vital to consider in the search for specific genetic polymorphisms that affect brain integrity and connectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shared aetiopathogenic factors among immune-mediated diseases have long been suggested by their co-familiality and co-occurrence, and molecular support has been provided by analysis of human leukocyte antigen (HLA) haplotypes and genome-wide association studies. The interrelationships can now be better appreciated following the genotyping of large immune disease sample sets on a shared SNP array: the 'Immunochip'. Here, we systematically analyse loci shared among major immune-mediated diseases. This reveals that several diseases share multiple susceptibility loci, but there are many nuances. The most associated variant at a given locus frequently differs and, even when shared, the same allele often has opposite associations. Interestingly, risk alleles conferring the largest effect sizes are usually disease-specific. These factors help to explain why early evidence of extensive 'sharing' is not always reflected in epidemiological overlap. © 2013 Macmillan Publishers Limited. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic factors are known to influence both the peak bone mass and probably the rate of change in bone density. A range of regulatory and structural genes has been proposed to be involved including collagen 1α1 (COL1A1), the estrogen receptor (ER), and the vitamin D receptor (VDR), but the actual genes involved are uncertain. We therefore studied the role of the COL1A1 and VDR loci in control of bone density by linkage in 45 dizygotic twin pairs and 29 nuclear families comprising 120 individuals. The influences on bone density of polymorphisms of COL1A1, VDR, and ER were studied by association both cross-sectionally and longitudinally in 193 elderly postmenopausal women (average age, 69 years) over a mean follow-up time of 6.3 years. Weak linkage of the COL1A1 locus with bone density was observed in both twins and families (p = 0.02 in both data sets), confirming previous observations of linkage of this locus with bone density. Association between the MscI polymorphism of COL1A1 and rate of lumbar spine bone loss was observed with significant gene-environment interaction related to dietary calcium intake (p = 0.0006). In the lowest tertile of dietary calcium intake, carriers of "s" alleles lost more bone than "SS" homozygotes (p = 0.01), whereas the opposite was observed in the highest dietary calcium intake (p = 0.003). Association also was observed between rate of bone loss at both the femoral neck and the lumbar spine and the TaqI VDR polymorphism (p = 0.03). This association was strongest in those in the lowest tertile of calcium intake, also suggesting the presence of gene-environment interaction involving dietary calcium and VDR, influencing bone turnover. No significant association was observed between the PvuII ER polymorphism alone or in combination with VDR or COL1A1 genotypes, with either bone density or its rate of change. These data support the involvement of COL1A1 in determination of bone density and the interaction of both COL1A1 and VDR with calcium intake in regulation of change of bone density over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Candidate gene studies have reported CYP19A1 variants to be associated with endometrial cancer and with estradiol (E2) concentrations. We analyzed 2937 single nucleotide polymorphisms (SNPs) in 6608 endometrial cancer cases and 37 925 controls and report the first genome wide-significant association between endometrial cancer and a CYP19A1 SNP (rs727479 in intron 2, P=4.8x10(-11)). SNP rs727479 was also among those most strongly associated with circulating E2 concentrations in 2767 post-menopausal controls (P=7.4x10(-8)). The observed endometrial cancer odds ratio per rs727479 A-allele (1.15, CI=1.11-1.21) is compatible with that predicted by the observed effect on E2 concentrations (1.09, CI=1.03-1.21), consistent with the hypothesis that endometrial cancer risk is driven by E2. From 28 candidate-causal SNPs, 12 co-located with three putative gene-regulatory elements and their risk alleles associated with higher CYP19A1 expression in bioinformatical analyses. For both phenotypes, the associations with rs727479 were stronger among women with a higher BMI (Pinteraction=0.034 and 0.066 respectively), suggesting a biologically plausible gene-environment interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aim of the present study was to examine co-twin dependence and its impact on twins' social contacts, leisure-time activities and psycho-emotional well-being. The role of co-twin dependence was also examined as a moderator of genetic and environmental influences on alcohol use in adolescence and in early adulthood. Methods: The present report is based on the Finnish Twin Cohort Study (FinnTwin16), a population-based study of five consecutive birth cohorts of Finnish twins born in the years 1975-1979. Baseline assessments were collected through mailed questionnaires, within two months of the twins' sixteenth birthday yielding replies from 5563 twin individuals. All respondent twins were sent follow-up questionnaires at ages of 17, 18½, and in early adulthood, when twins were 22-27 years old. Measures: The questionnaires included a survey of health habits and attitudes, a symptom checklist and questions about twins' relationships with parents, peers and co-twin. Measures used were twins' self-reports of their own dependence and their co-twin's dependence at age 16, reports of twins' leisure-time activities and social contacts, alcohol use, psychological distress and somatic symptoms both in adolescence and in early adulthood. Results: In the present study 25.6% of twins reported dependence on their co-twin. There were gender and zygosity differences in dependence, females and MZ twins were more likely to report dependence than males and DZ twins. Co-twin dependence can be viewed on one hand as an individual characteristic, but on the other hand as a pattern of dyadic interaction that is mutually regulated and reciprocal. Most of the twins (80.7%) were either concordantly co-twin dependent or concordantly co-twin independent. The associations of co-twin dependence with twins' social interactions and psycho-emotional characteristics were relatively consistent both in adolescence and in early adulthood. Dependence was related to higher contact frequency and a higher proportion of shared leisure-time activities between twin siblings at the baseline and the follow-up. Additionally co-twin dependence was associated with elevated levels of psycho-emotional distress and somatic complaints, especially in adolescence. In the framework of gene-environment interaction, these results suggest that the genetic contribution to individual differences in drinking patterns is dependent on the nature of the pair-wise relationship of twin siblings. Conclusions: The results of this study indicate that co-twin dependence is a genuine feature of the co-twin relationship and shows the importance of studying the impact of various features of co-twin relationships on individual twins' social and psycho-emotional life and well-being. Our study also offers evidence that differences in inter-personal relationships contribute to the effects of genetic propensities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alcohol and other substance use disorders (SUDs) result in great costs and suffering for individuals and families and constitute a notable public health burden. A multitude of factors, ranging from biological to societal, are associated with elevated risk of SUDs, but at the level of individuals, one of the best predictors is a family history of SUDs. Genetically informative twin and family studies have consistently indicated this familial risk to be mainly genetic. In addition, behavioral and temperamental factors such as early initiation of substance use and aggressiveness are associated with the development of SUDs. These familial, behavioral and temperamental risk factors often co-occur, but their relative importance is not well known. People with SUDs have also been found to differ from healthy controls in various domains of cognitive functioning, with poorer verbal ability being among the most consistent findings. However, representative population-based samples have rarely been used in neuropsychological studies of SUDs. In addition, both SUDs and cognitive abilities are influenced by genetic factors, but whether the co-variation of these traits might be partly explained by overlapping genetic influences has not been studied. Problematic substance use also often co-occurs with low educational level, but it is not known whether these outcomes share part of their underlying genetic influences. In addition, educational level may moderate the genetic etiology of alcohol problems, but gene-environment interactions between these phenomena have also not been widely studied. The incidence of SUDs peaks in young adulthood rendering epidemiological studies in this age group informative. This thesis investigated cognitive functioning and other correlates of SUDs in young adulthood in two representative population-based samples of young Finnish adults, one of which consisted of monozygotic and dizygotic twin pairs enabling genetically informative analyses. Using data from the population-based Mental Health in Early Adulthood in Finland (MEAF) study (n=605), the lifetime prevalence of DSM-IV any substance dependence or abuse among persons aged 21—35 years was found to be approximately 14%, with a majority of the diagnoses being alcohol use disorders. Several correlates representing the domains of behavioral and affective factors, parental factors, early initiation of substance use, and educational factors were individually associated with SUDs. The associations between behavioral and affective factors (attention or behavior problems at school, aggression, anxiousness) and SUDs were found to be largely independent of factors from other domains, whereas daily smoking and low education were still associated with SUDs after adjustment for behavioral and affective factors. Using a wide array of neuropsychological tests in the MEAF sample and in a subsample (n=602) of the population-based FinnTwin16 (FT16) study, consistent evidence of poorer verbal cognitive ability related to SUDs was found. In addition, participants with SUDs performed worse than those without disorders in a task assessing psychomotor processing speed in the MEAF sample, whereas no evidence of more specific cognitive deficits was found in either sample. Biometrical structural equation models of the twin data suggested that both alcohol problems and verbal ability had moderate heritabilities (0.54—0.72), and that their covariation could be explained by correlated genetic influences (genetic correlations -0.20 to -0.31). The relationship between educational level and alcohol problems, studied in the full epidemiological FT16 sample (n=4,858), was found to reflect both genetic correlation and gene-environment interaction. The co-occurrence of low education and alcohol problems was influenced by overlapping genetic factors. In addition, higher educational level was associated with increased relative importance of genetic influences on alcohol problems, whereas environmental influences played a more important role in young adults with lower education. In conclusion, SUDs, especially alcohol abuse and dependence, are common among young Finnish adults. Behavioral and affective factors are robustly related to SUDs independently of many other factors, and compared to healthy peers, young adults who have had SUDs during their life exhibit significantly poorer verbal cognitive ability, and possibly less efficient psychomotor processing. Genetic differences between individuals explain a notable proportion of individual differences in risk of alcohol dependence, verbal ability, and educational level, and the co-occurrence of alcohol problems with poorer verbal cognition and low education is influenced by shared genetic backgrounds. Finally, various environmental factors related to educational level in young adulthood moderate the relative importance of genetic factors influencing the risk of alcohol problems, possibly reflecting differences in social control mechanisms related to educational level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.