992 resultados para galerkin-petrov method


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a discontinuous-Galerkin-based immersed boundary method for elasticity problems. The resulting numerical scheme does not require boundary fitting meshes and avoids boundary locking by switching the elements intersected by the boundary to a discontinuous Galerkin approximation. Special emphasis is placed on the construction of a method that retains an optimal convergence rate in the presence of non-homogeneous essential and natural boundary conditions. The role of each one of the approximations introduced is illustrated by analyzing an analog problem in one spatial dimension. Finally, extensive two- and three-dimensional numerical experiments on linear and nonlinear elasticity problems verify that the proposed method leads to optimal convergence rates under combinations of essential and natural boundary conditions. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A numerical method to approximate partial differential equations on meshes that do not conform to the domain boundaries is introduced. The proposed method is conceptually simple and free of user-defined parameters. Starting with a conforming finite element mesh, the key ingredient is to switch those elements intersected by the Dirichlet boundary to a discontinuous-Galerkin approximation and impose the Dirichlet boundary conditions strongly. By virtue of relaxing the continuity constraint at those elements. boundary locking is avoided and optimal-order convergence is achieved. This is shown through numerical experiments in reaction-diffusion problems. Copyright (c) 2008 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A anastomose sistêmico-pulmonar é um excelente procedimento paliativo para crianças e recém-nascidos portadores de cardiopatias congênitas cianóticas com diminuição da circulação pulmonar. Neste artigo, as aproximações “Streamline Upwind/Petrov-Galerkin – SUPG” foram utilizadas na simulação de escoamento de sangue em uma anastomose sistêmico pulmonar. A Anastomose estudada neste artigo é conhecido como Blalock-Taussig modificada no qual um enxerto de tubo sintético (prótese) é interposto entre a artéria subclávia esquerda e a artéria pulmonar com o objetivo de desviar parte do fluxo sistêmico ao pulmonar. A metodologia de elementos finitos utilizada, conhecida como método SUPG, supera as dificuldades enfrentadas pelo método de Galerkin clássico em altos números de Reynolds, que são compatibilizar os subespaços de velocidade e pressão – satisfazendo deste modo a condição denominada de Babuška-Brezzi e evitar oscilações espúrias devido à natureza assimétrica da aceleração advectiva de equação de momentum – adicionando termos malha-dependentes para a formulação de Galerkin clássica. Estes termos adicionais são construídos para aumentar a estabilidade da formulação de Galerkin original sem prejudicar sua consistência. Um modelo tridimensional parametrizado, utilizando o elemento lagrangeano trilinear, foi criado a partir de medições obtidas durante procedimento cirúrgico para avaliar os efeitos dos parametros geométricos envolvidos na cirurgia (diâmetro e ângulo do enxerto e a pulsatilidade do escoamento) Os resultados apresentam que o ângulo da anastomose proximal tem sensível influência na quantidade de fluxo desviada pelo enxerto e enorme influência na porcentagem de fluxo direcionado para cada um dos pulmões. Quanto ao diâmetro do enxerto conclui-se que este é o regulador principal da porcentagem de fluxo desviada. A partir das simulações realizadas determinou-se correlações para o fator de atrito e porcentagem de fluxo sangüíneo desviado pelo enxerto.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents an analysis of the wavelet-Galerkin method for one-dimensional elastoplastic-damage problems. Time-stepping algorithm for non-linear dynamics is presented. Numerical treatment of the constitutive models is developed by the use of return-mapping algorithm. For spacial discretization we can use wavelet-Galerkin method instead of standard finite element method. This approach allows to locate singularities. The discrete formulation developed can be applied to the simulation of one-dimensional problems for elastic-plastic-damage models. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to obtain the quantum-mechanical properties of layered semicondutor structures (quantum well and superlattice structures, for instance), solutions of the Schrodinger equation should be obtained for arbitrary potential profiles. In this paper, it is shown that such problems may be also studied by the Element Free Galerkin Method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, the meshless method is introduced to magnetohydrodynamics. A numerical scheme based on the element-free Galerkin method is used to solve the laminar steady-state two-dimensional fully developed magnetohydrodynamic flow in a rectangular duct. Accurate and convergent solutions are achieved for low to moderately high Hartmann numbers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the key issues which makes the waveletGalerkin method unsuitable for solving general electromagnetic problems is a lack of exact representations of the connection coefficients. This paper presents the mathematical formulae and computer procedures for computing some common connection coefficients. The characteristic of the present formulae and procedures is that the arbitrary point values of the connection coefficients, rather than the dyadic point values, can be determined. A numerical example is also given to demonstrate the feasibility of using the wavelet-Galerkin method to solve engineering field problems. © 2000 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the recent decades, meshless methods (MMs), like the element-free Galerkin method (EFGM), have been widely studied and interesting results have been reached when solving partial differential equations. However, such solutions show a problem around boundary conditions, where the accuracy is not adequately achieved. This is caused by the use of moving least squares or residual kernel particle method methods to obtain the shape functions needed in MM, since such methods are good enough in the inner of the integration domains, but not so accurate in boundaries. This way, Bernstein curves, which are a partition of unity themselves,can solve this problem with the same accuracy in the inner area of the domain and at their boundaries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

En esta tesis, el método de estimación de error de truncación conocido como restimation ha sido extendido de esquemas de bajo orden a esquemas de alto orden. La mayoría de los trabajos en la bibliografía utilizan soluciones convergidas en mallas de distinto refinamiento para realizar la estimación. En este trabajo se utiliza una solución en una única malla con distintos órdenes polinómicos. Además, no se requiere que esta solución esté completamente convergida, resultando en el método conocido como quasi-a priori T-estimation. La aproximación quasi-a priori estima el error mientras el residuo del método iterativo no es despreciable. En este trabajo se demuestra que algunas de las hipótesis fundamentales sobre el comportamiento del error, establecidas para métodos de bajo orden, dejan de ser válidas en esquemas de alto orden, haciendo necesaria una revisión completa del comportamiento del error antes de redefinir el algoritmo. Para facilitar esta tarea, en una primera etapa se considera el método conocido como Chebyshev Collocation, limitando la aplicación a geometrías simples. La extensión al método Discontinuouos Galerkin Spectral Element Method presenta dificultades adicionales para la definición precisa y la estimación del error, debidos a la formulación débil, la discretización multidominio y la formulación discontinua. En primer lugar, el análisis se enfoca en leyes de conservación escalares para examinar la precisión de la estimación del error de truncación. Después, la validez del análisis se demuestra para las ecuaciones incompresibles y compresibles de Euler y Navier Stokes. El método de aproximación quasi-a priori r-estimation permite desacoplar las contribuciones superficiales y volumétricas del error de truncación, proveyendo información sobre la anisotropía de las soluciones así como su ratio de convergencia con el orden polinómico. Se demuestra que esta aproximación quasi-a priori produce estimaciones del error de truncación con precisión espectral. ABSTRACT In this thesis, the τ-estimation method to estimate the truncation error is extended from low order to spectral methods. While most works in the literature rely on fully time-converged solutions on grids with different spacing to perform the estimation, only one grid with different polynomial orders is used in this work. Furthermore, a non timeconverged solution is used resulting in the quasi-a priori τ-estimation method. The quasi-a priori approach estimates the error when the residual of the time-iterative method is not negligible. It is shown in this work that some of the fundamental assumptions about error tendency, well established for low order methods, are no longer valid in high order schemes, making necessary a complete revision of the error behavior before redefining the algorithm. To facilitate this task, the Chebyshev Collocation Method is considered as a first step, limiting their application to simple geometries. The extension to the Discontinuous Galerkin Spectral Element Method introduces additional features to the accurate definition and estimation of the error due to the weak formulation, multidomain discretization and the discontinuous formulation. First, the analysis focuses on scalar conservation laws to examine the accuracy of the estimation of the truncation error. Then, the validity of the analysis is shown for the incompressible and compressible Euler and Navier Stokes equations. The developed quasi-a priori τ-estimation method permits one to decouple the interfacial and the interior contributions of the truncation error in the Discontinuous Galerkin Spectral Element Method, and provides information about the anisotropy of the solution, as well as its rate of convergence in polynomial order. It is demonstrated here that this quasi-a priori approach yields a spectrally accurate estimate of the truncation error.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present and analyze a subgrid viscosity Lagrange-Galerk in method that combines the subgrid eddy viscosity method proposed in W. Layton, A connection between subgrid scale eddy viscosity and mixed methods. Appl. Math. Comp., 133: 14 7-157, 2002, and a conventional Lagrange-Galerkin method in the framework of P1⊕ cubic bubble finite elements. This results in an efficient and easy to implement stabilized method for convection dominated convection diffusion reaction problems. Numerical experiments support the numerical analysis results and show that the new method is more accurate than the conventional Lagrange-Galerkin one.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a pre-processing mesh re-distribution algorithm based upon harmonic maps employed in conjunction with discontinuous Galerkin approximations of advection-diffusion-reaction problems. Extensive two-dimensional numerical experiments with different choices of monitor functions, including monitor functions derived from goal-oriented a posteriori error indicators are presented. The examples presented clearly demonstrate the capabilities and the benefits of combining our pre-processing mesh movement algorithm with both uniform, as well as, adaptive isotropic and anisotropic mesh refinement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We introduce and analyze a discontinuous Galerkin method for the numerical discretization of a stationary incompressible magnetohydrodynamics model problem. The fluid unknowns are discretized with inf-sup stable discontinuous P^3_{k}-P_{k-1} elements whereas the magnetic part of the equations is approximated by discontinuous P^3_{k}-P_{k+1} elements. We carry out a complete a-priori error analysis and prove that the energy norm error is convergent of order O(h^k) in the mesh size h. We also show that the method is able to correctly capture and resolve the strongest magnetic singularities in non-convex polyhedral domains. These results are verified in a series of numerical experiments.