843 resultados para génotype 3a
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Il progetto di tesi specialistica svolto durante questo anno accademico si è suddiviso in due parti: un primo periodo, da settembre 2010 a gennaio 2011, presso il dipartimento di Chimica Organica “A. Mangini” della Facoltà di Chimica Industriale dell’Università di Bologna e un secondo periodo in Spagna, da marzo ad agosto 2011, presso la Unitat de Química Farmacèutica de la Facultat de Farmàcia de la Universitat de Barcelona. Nel primo periodo a Bologna mi sono occupato della sintesi di 4-bromo-pirazoli da utilizzare come precursori di composti eterociclici condensati. Inizialmente è stato sintetizzato un pirazolo 1,3,5-trisostituito tramite cicloaddizione 1,3-dipolare tra un acetilene e una nitril immina generata in situ da un idrazonoil cloruro. Il pirazolo è stato poi bromurato facendo uno screening di diversi agenti bromuranti e condizioni di reazione per ottenere la migliore resa e chemoselettività. Infine è stata studiata la ciclizzazione intramolecolare del prodotto bromurato tramite reazione di cross-coupling catalizzata da metalli di transizione. Nel secondo periodo a Barcellona mi sono occupato della sintesi di dicarbossimmidi tricicliche con struttura a gabbia con il fine di creare alcheni altamente piramidalizzati e di studiarne la dimerizzazione ad un derivato del dodecaedrano. La strategia sintetica è stata impostata utilizzando come reagente di partenza una semplice succinimmide per giungere, dopo numerosi passaggi, al precursore del prodotto triciclico, del quale è stata studiata la ciclizzazione tramite reazione Diels-Alder intramolecolare.
Resumo:
The human p53 tumor suppressor, known as the “guardian of the genome”, is one of the most important molecules in human cancers. One mechanism for suppressing p53 uses its negative regulator, MDM2, which modulates p53 by binding directly to and decreasing p53 stability. In testing novel therapeutic approaches activating p53, we investigated the preclinical activity of the MDM2 antagonist, Nutlin-3a, in Philadelphia positive (Ph+) and negative (Ph-) leukemic cell line models, and primary B-Acute lymphoblastic leukemia (ALL) patient samples. In this study we demonstrated that treatment with Nutlin-3a induced grow arrest and apoptosis mediated by p53 pathway in ALL cells with wild-type p53, in time and dose-dependent manner. Consequently, MDM2 inhibitor caused an increase of pro-apoptotic proteins and key regulators of cell cycle arrest. The dose-dependent reduction in cell viability was confirmed in primary blast cells from Ph+ ALL patients with the T315I Bcr-Abl kinase domain mutation. In order to better elucidate the implications of p53 activation and to identify biomarkers of clinical activity, gene expression profiling analysis in sensitive cell lines was performed. A total of 621 genes were differentially expressed (p < 0.05). We found a strong down-regulation of GAS41 (growth-arrest specific 1 gene) and BMI1 (a polycomb ring-finger oncogene) (fold-change -1.35 and -1.11, respectively; p-value 0.02 and 0.03, respectively) after in vitro treatment as compared to control cells. Both genes are repressors of INK4/ARF and p21. Given the importance of BMI in the control of apoptosis, we investigated its pattern in treated and untreated cells, confirming a marked decrease after exposure to MDM2 inhibitor in ALL cells. Noteworthy, the BMI-1 levels remained constant in resistant cells. Therefore, BMI-1 may be used as a biomarker of response. Our findings provide a strong rational for further clinical investigation of Nutlin-3a in Ph+ and Ph-ALL.
Resumo:
ABSTRACT: BACKGROUND: Conserved Wnt ligands are critical for signalling during development; however, various factors modulate their activity. Among these factors are the Secreted Frizzled-Related Proteins (SFRP). We previously isolated the SFRP-4 gene from an involuting rat mammary gland and later showed that transgenic mice inappropriately expressing SFRP-4 during lactation exhibited a high level of apoptosis with reduced survival of progeny. RESULTS: In order to address the questions related to the mechanism of Wnt signalling and its inhibition by SFRP-4 which we report here, we employed partially-purified Wnt-3a in a co-culture model system. Ectopic expression of SFRP-4 was accomplished by infection with a pBabepuro construct. The co-cultures comprised Line 31E mouse mammary secretory epithelial cells and Line 30F, undifferentiated, fibroblast-like mouse mammary cells. In vitro differentiation of such co-cultures can be demonstrated by induction of the beta-casein gene in response to lactogenic hormones.We show here that treatment of cells with partially-purified Wnt-3a initiates Dvl-3, Akt/PKB and GSK-3beta hyperphosphorylation and beta-catenin activation. Furthermore, while up-regulating the cyclin D1 and connexin-43 genes and elevating transepithelial resistance of Line 31E cell monolayers, Wnt-3a treatment abrogates differentiation of co-cultures in response to the lactogenic hormones prolactin, insulin and glucocorticoid. Cells which express SFRP-4, however, are largely unaffected by Wnt-3a stimulation. Since a physical association between Wnt-3a and SFRP-4 could be demonstrated with immunoprecipitation/Western blotting experiments, this interaction, presumably owing to the Frizzled homology region typical of all SFRPs, explains the refractory response to Wnt-3a which was observed. CONCLUSION: This study demonstrates that Wnt-3a treatment activates the Wnt signalling pathway and interferes with in vitro differentiation of mammary co-cultures to beta-casein production in response to lactogenic hormones. Similarly, in another measure of differentiation, following Wnt-3a treatment mammary epithelial cells could be shown to up-regulate the cyclin D1 and connexin-43 genes while phenotypically they show increased transepithelial resistance across the cell monolayer. All these behavioural changes can be blocked in mammary epithelial cells expressing SFRP-4. Thus, our data illustrate in an in vitro model a mechanism by which SFRP-4 can modulate a differentiation response to Wnt-3a.
Resumo:
Der Band ist nach der Katalogisierung neu gebunden worden.
Resumo:
The human cytochrome P450 3A (CYP3A) subfamily is responsible for most of the metabolism of therapeutic drugs; however, an adequate in vivo model has yet to be discovered. This study begins with an investigation of a controversial topic surrounding the human CYP3As--estrogen regulation. A novel approach to this topic was used by defining expression in the estrogen-responsive endometrium. This study shows that estrogen down-regulates CYP3A4 expression in the endometrium. On the other hand, analogous studies showed an increase in CYP3A expression as age increases in liver tissue. Following the discussion of estrogen regulation, is an investigation of the cross-species relationships among all of the CYP3As was completed. The study compares isoforms from piscines, avians, rodents, canines, ovines, bovines, and primates. Using the traditional phylogenetic analyses and employing a novel approach using exon and intron lengths, the results show that only another primate could be the best animal model for analysis of the regulation of the expression of the human CYP3As. This analysis also demonstrated that the chimpanzee seems to be the best available human model. Moreover, the study showed the presence and similarities of one additional isoform in the chimpanzee genome that is absent in humans. Based on these results, initial characterization of the chimpanzee CYP3A subfamily was begun. While the human genome contains four isoforms--CYP3A4, CYP3A5, CYP3A7, and CYP3A43--the chimpanzee genome has five, the four previously mentioned and CYP3A67. Both species express CYP3A4, CYP3A5, and CYP3A43, but humans express CYP3A7 while chimpanzees express CYP3A67. In humans, CYP3A4 is expressed at higher levels than the other isoforms, but some chimpanzee individuals express CYP3A67 at higher levels than CYP3A4. Such a difference is expected to alter significantly the total CYP3A metabolism. On the other hand, any study considering individual isoforms would still constitute a valid method of study for the human CYP3A4, CYP3A5, and CYP3A43 isoforms. ^