953 resultados para fungal physiology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Drug delivery through the skin has been used to target the epidermis, dermis and deeper tissues and for systemic delivery, The major barrier for the transport of drugs through the skin is the stratum corneum, with most transport occurring through the intercellular region, The polarity of the intercellular region appears to be similar to butanol, with the diffusion of solutes being hindered by saturable hydrogen bonding to the polar head groups of the ceramides, fatty acids and other intercellular lipids, Accordingly, the permeability of the more lipophilic solutes is greatest from aqueous solutions, whereas polar solute permeability is favoured by hydrocarbon-based vehicles. 2. The skin is capable of metabolizing many substances and, through its microvasculature, limits the transport of most substances into regions below the dermis. 3. Although the flux of solutes through the skin should be identical for different vehicles when the solute exists as a saturated solution, the fluxes vary in accordance with the skin penetration enhancement properties of the vehicle. It is therefore desirable that the regulatory standards required for the bioequivalence of topical products include skin studies. 4. Deep tissue penetration can be related to solute protein binding, solute molecular size and dermal blood flow. 5. Iontophoresis is a promising area of skin drug delivery, especially for ionized solutes and when a rapid effect is required. 6. In general, psoriasis and other skin diseases facilitate drug delivery through the skin. 7. It is concluded that the variability in skin permeability remains an obstacle in optimizing drug delivery by this route.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. The aim of this study was to evaluate the epidemiology of bacterial and fungal pneumonia in lung transplant (LT) recipients and to assess donor-to-host transmission of these microorganisms. Materials and Methods. We retrospectively studied all positive cultures from bronchoalveolar lavage (BAL) of 49 lung transplant recipients and their donors from August 2003 to April 2007. Results. There were 108 episodes of pneumonia during a medium follow-up of 412 days (range, 1-1328 days). The most frequent microorganisms were: Pseudomonas aeruginosa (n = 36; 33.3%), Staphylococcus aureus (n = 29; 26.8%), and Aspergillus spp. (n = 18; 16%). Other fungal infections were due to Fusarium spp., Cryptococcus neoformans, and Paracoccidioides brasiliensis. Of the 31 donors with positive BAL, 15 had S. aureus. There were 21 pretransplant colonized recipients (43%) and 16 of them had suppurative underlying lung disease. P. aeruginosa was the most frequent colonizing organism (59% of pretransplant positive cultures). There were 11 episodes of bacteremia and lungs were the source in 5 cases. Sixteen deaths occurred and 6 (37.5%) were due to infection. Statistical analyses showed association between pretransplant colonizing microorganisms from suppurative lung disease patients and pneumonias after lung transplantation (RR = 4.76; P = .04; 95% CI = 1.02-22.10). No other analyzed factor was significant. Conclusions. Bacterial and fungal infections are frequent and contribute to higher mortality in lung transplant recipients. P. aeruginosa is the most frequent agent of respiratory infections. This study did not observe any impact of donor lung organisms on pneumonia after lung transplantation. Nevertheless, we demonstrated an association between pretransplant colonizing microorganisms and early pneumonias in suppurative lung transplant recipients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee`s ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. Fungal keratitis (FK) is a sight-threatening disease, more prevalent in developing regions. The present retrospective study was conducted in order to evaluate the epidemiologic and clinical aspects and the progression of FK in patients treated at two ophthalmologic reference centers in Southeast Brazil. METHODS. The charts of patients with infectious keratitis treated between 2000 and 2004 were reviewed. For the 66 cases of FK confirmed by microbiological analysis, data related to patient, disease, and therapeutic approaches were obtained. RESULTS. Mean patient age was 40.7 +/- 16 years. Fifty-three were men and 13 were women. Ocular trauma occurred in 40% of cases (27). Previous medications taken by the patients were quinolone in 72.5% and antimycotics in 30%. Visual acuity (VA) at presentation was >0.3 in 16% and <0.1 in 74.5%. Penetrant keratoplasty was performed in 38% and evisceration in 15%. The causing agents were Fusarium sp in 67%, Aspergillus sp in 10.5%, and Candida sp in 10%. Medication alone resolved 39% of cases within a mean period of 24.5 +/- 12 days. Final VA was >0.3 in 28%, and <0.1 in 63%. CONCLUSIONS. Fungal keratitis presented as a disease with severe complications, predominantly among young males, and was mostly caused by filamentous fungi. The present information permits the establishment of preventive strategies. Reducing the time between onset and treatment and using more accessible specific medication would reverse the negative prognosis. (Eur J Ophthalmol 2009; 19: 355-61)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paracoccidioides brasiliensis infection causes a systemic mycosis originally described in Latin America but with Current reports of worldwide distribution. The clinical presentation of paracoccidiodomycosis as an isolated long-bone lesion in children is quite unusual. This article describes a 10-year-old male with a lytic femoral bone lesion caused by P. brasiliensis infection that was first suspected of being of neoplasic etiology. The text also emphasizes the importance of including endemic fungal infections in the differential diagnosis of bone lesions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vascular manifestations associated with diabetes mellitus (DM) result from the dysfunction of several vascular physiology components mainly involving the endothelium, vascular smooth muscle and platelets. It is also known that hyperglycemia-induced oxidative stress plays a role in the development of this dysfunction. This review considers the basic physiology of the endothelium, especially related to the synthesis and function of nitric oxide. We also discuss the pathophysiology of vascular disease associated with DM. This includes the role of hyperglycemia in the induction of oxidative stress and the role of advanced glycation end-products. We also consider therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paracoccidioidomycosis, a debilitating pulmonary mycosis, is caused by the dimorphic fungus Paracoccidioides brasiliensis. The infection results in the formation of granulomas containing viable yeast cells that are the fungal sources for disease reactivation. Because CD4(+)CD25(+) regulatory T cells (Tregs) are in the lesions of patients with paracoccidioidomycosis, the migration of Treg cells is dependent on the axis chemokine-chemokine receptors, and CCR5 ligands are produced in P. brasiliensis-induced lesions, we investigated the role of CCR5 in the control of the infection. The results showed that CCR5(-/-) mice are more efficient in controlling fungal growth and dissemination and exhibited smaller granulomas than wild-type (WT) mice. In the absence of CCR5, the percentage of CD4(+)CD25(+) T cells expressing Foxp3, glucocorticoid-induced TNFR (GITR), CD103, CD45(low), and CTLA-4 in the granulomas was significantly decreased. Interestingly, P. brasiliensis infection resulted in an absence of T cell proliferation in response to Con A in WT but not CCR5(-/-) mice that was abrogated by anti-CTLA-4 mAb and anti-GITR mAb. Moreover, the adoptive transfer of CD4(+)CD25(+) but not CD4(+)CD25(-) T cells from infected WT to infected CCR5(-/-) mice resulted in a significant increase in fungal load. Overall, CCR5 is a key receptor for the migration of Treg cells to the site of P. brasiliensis infections leading to down-modulation of effector immune response and the long-term presence of the fungus in the granulomas. Thus, a tight control of Treg cell migration to the granulomatous lesions could be an important mechanism for avoiding exacerbation and reactivation of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The veg1 (vegetative) mutant in pea (Pisum sativum L.) does not flower under any circumstances and gi (gigas) mutants remain vegetative under certain conditions. gi plants are deficient in production of floral stimulus, whereas veg1 plants lack a response to floral stimulus. During long days in particular, these non-flowering mutant plants eventually enter a stable compact phase characterised by a large reduction in internode length, small leaves and growth of lateral shoots from the upper-stem (aerial) nodes. The first-order laterals in turn produce second-order laterals and so on in a reiterative pattern. The apical bud is reduced in size but continues active growth. Endogenous hormone measurements and gibberellin application studies with gi-1, gi-2 and veg1 plants indicate that a reduction in gibberellin and perhaps indole-3-acetic acid level may account, at least partially, for the compact aerial shoot phenotype. In the gi-1 mutant, the compact phenotype is rescued by transfer from a 24- to an 8-h photoperiod. We propose that in plants where flowering is prevented by a lack of floral stimulus or an inability to respond, the large reduction in photoperiod gene activity during long days may lead to a reduction in apical sink strength that is manifest in an altered hormone profile and weak apical dominance.