932 resultados para fractal codes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We focus on full-rate, fast-decodable space–time block codes (STBCs) for 2 x 2 and 4 x 2 multiple-input multiple-output (MIMO) transmission. We first derive conditions and design criteria for reduced-complexity maximum-likelihood (ML) decodable 2 x 2 STBCs, and we apply them to two families of codes that were recently discovered. Next, we derive a novel reduced-complexity 4 x 2 STBC, and show that it outperforms all previously known codes with certain constellations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2×2 MIMO profiles included in Mobile WiMAX specifications are Alamouti’s space-time code (STC) fortransmit diversity and spatial multiplexing (SM). The former hasfull diversity and the latter has full rate, but neither of them hasboth of these desired features. An alternative 2×2 STC, which is both full rate and full diversity, is the Golden code. It is the best known 2×2 STC, but it has a high decoding complexity. Recently, the attention was turned to the decoder complexity, this issue wasincluded in the STC design criteria, and different STCs wereproposed. In this paper, we first present a full-rate full-diversity2×2 STC design leading to substantially lower complexity ofthe optimum detector compared to the Golden code with only a slight performance loss. We provide the general optimized form of this STC and show that this scheme achieves the diversitymultiplexing frontier for square QAM signal constellations. Then, we present a variant of the proposed STC, which provides a further decrease in the detection complexity with a rate reduction of 25% and show that this provides an interesting trade-off between the Alamouti scheme and SM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We design powerful low-density parity-check (LDPC) codes with iterative decoding for the block-fading channel. We first study the case of maximum-likelihood decoding, and show that the design criterion is rather straightforward. Since optimal constructions for maximum-likelihood decoding do not performwell under iterative decoding, we introduce a new family of full-diversity LDPC codes that exhibit near-outage-limit performance under iterative decoding for all block-lengths. This family competes favorably with multiplexed parallel turbo codes for nonergodic channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new graph-based construction of generalized low density codes (GLD-Tanner) with binary BCH constituents is described. The proposed family of GLD codes is optimal on block erasure channels and quasi-optimal on block fading channels. Optimality is considered in the outage probability sense. Aclassical GLD code for ergodic channels (e.g., the AWGN channel,the i.i.d. Rayleigh fading channel, and the i.i.d. binary erasure channel) is built by connecting bitnodes and subcode nodes via a unique random edge permutation. In the proposed construction of full-diversity GLD codes (referred to as root GLD), bitnodes are divided into 4 classes, subcodes are divided into 2 classes, and finally both sides of the Tanner graph are linked via 4 random edge permutations. The study focuses on non-ergodic channels with two states and can be easily extended to channels with 3 states or more.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show how to build full-diversity product codes under both iterative encoding and decoding over non-ergodic channels, in presence of block erasure and block fading. The concept of a rootcheck or a root subcode is introduced by generalizing the same principle recently invented for low-density parity-check codes. We also describe some channel related graphical properties of the new family of product codes, a familyreferred to as root product codes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple-input multiple-output (MIMO) techniques have become an essential part of broadband wireless communications systems. For example, the recently developed IEEE 802.16e specifications for broadband wireless access include three MIMOprofiles employing 2×2 space-time codes (STCs), and two of these MIMO schemes are mandatory on the downlink of Mobile WiMAX systems. One of these has full rate, and the other has full diversity, but neither of them has both of the desired features. The third profile, namely, Matrix C, which is not mandatory, is both a full rate and a full diversity code, but it has a high decoder complexity. Recently, the attention was turned to the decodercomplexity issue and including this in the design criteria, several full-rate STCs were proposed as alternatives to Matrix C. In this paper, we review these different alternatives and compare them to Matrix C in terms of performances and the correspondingreceiver complexities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper derives approximations allowing the estimation of outage probability for standard irregular LDPC codes and full-diversity Root-LDPC codes used over nonergodic block-fading channels. Two separate approaches are discussed: a numerical approximation, obtained by curve fitting, for both code ensembles, and an analytical approximation for Root-LDPC codes, obtained under the assumption that the slope of the iterative threshold curve of a given code ensemble matches the slope of the outage capacity curve in the high-SNR regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents our investigation on iterativedecoding performances of some sparse-graph codes on block-fading Rayleigh channels. The considered code ensembles are standard LDPC codes and Root-LDPC codes, first proposed in and shown to be able to attain the full transmission diversity. We study the iterative threshold performance of those codes as a function of fading gains of the transmission channel and propose a numerical approximation of the iterative threshold versus fading gains, both both LDPC and Root-LDPC codes.Also, we show analytically that, in the case of 2 fading blocks,the iterative threshold root of Root-LDPC codes is proportional to (α1 α2)1, where α1 and α2 are corresponding fading gains.From this result, the full diversity property of Root-LDPC codes immediately follows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No passado, a Matemática esteve, em grande parte, preocupada com conjuntos e funções que podem ser estudados através dos métodos clássicos de cálculo1. Por exemplo, na geometria, Havia o hábito de descrever os objectos através de formas regulares: rectas, circunferências, cones etc. Mas, será que uma nuvem é formada por esferas, uma montanha por cones e continentes por circunferências? Existem alguns objectos na natureza, nas ciências em geral e na matemática, em particular (conjuntos, funções), que não são suficientemente "lisos" e que tendiam a ser ignorados e rotulados como “patológicos” . Tais objectos foram considerados como curiosidades, e assim, estudados e analisados por alguns investigadores ao longo dos tempos. Porém, em 1960, Benoit B. Mandelbrot2, trouxe essa matéria à agenda matemática da actualidade, apresentando uma fundamentação coerente do que seriam essas "não-formas". Refazendo alguns estudos nessa área e conhecendo ideias de outros autores apresentou estudos sobre fractais criando assim a teoria dos fractais ou a geometria fractal. Os fractais caracterizam-se por terem uma aparência complexa e confusa, em certos casos, mas quando olhados matematicamente, sua análise denota figuras que apresentam regularidades e comportamentos curiosos, como o de se assemelharem a elas mesmas quando observadas a diferentes escalas, por exemplo. A geometria fractal é portanto o ramo da Matemática que estuda as propriedades dos fractais. Descreve muitas situações que não podem ser explicadas facilmente pela Geometria Euclidiana. A geometria fractal descreve taambém como os fractais podem ser aplicados na ciência, tecnologia, arte, etc., sobretudo com recurso computadores. A geometria fractal ainda não fez a sua entrada nos programas dematemática no sistema educativo cabo-verdiano, sendo portanto, pouco conhecida nesse meio. Assim escolhemos essa geometria como tema do nosso trabalho, cujo objectivo geral é divulgar o mundo dos fractais e as suas aplicações, na educação. Aprofundar os conhecimentos sobre a geometria fractal e suas aplicações práticas e no ensino, integrar os conhecimentos de Álgebra Linear, Geometria e Topologia adquiridos no curso e aplicar os fractais ao estudo das sucessões (progressões geométricas) são os objectivos específicos. A partir destes objectivos surgiram as nossas questões de investigação, que tentamos responder ao longo do estudo: 1. Como se fundamenta a geometria fractal? 2. Quais são as principais aplicações? 3. Como aplicar os fractais no ensino secundário (sucessões), de modo a tornar o ensino de matemática mais interessante e motivador? Tais são as questões para as quais procuramos uma resposta ao longo do desenvolvimento do projecto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dentre as ferramentas usadas para descrever a estrutura ramificada ou a superfície rugosa e distorcida de ácidos húmicos (AH), a geometria fractal aparece como uma das mais adequadas para explicar a conformação de partículas húmicas (agregados moleculares). Do ponto de vista experimental, a dimensão fractal (D) de sistemas naturais pode ser determinada a partir do monitoramento da luz transmitida, não espalhada e não absorvida (turbidimetria 'τ'). A presença de fractais implica que o sistema pode ser decomposto em partes, em que cada uma, subseqüentemente, é cópia do todo. A determinação do valor 'D' dessas partículas foi conseguida pela utilização de turbidimetria, em que suspensões de AH-comercial e de AH-Espodossolo foram analisadas por espectrofotometria UV-Vis. O fundamento matemático utilizado foi a lei de potência τ ∝ λβ, em que β < 3 indica a presença de fractal de massa (Dm); 3 < β < 4 indica fractal de superfície (Ds), e β ≅ 3 indica não-fractal (NF). A declividade das retas (β) por meio do gráfico (logτ vs logλ) permitiu a obtenção de 'D'. Segundo os resultados, partículas de AH em suspensões aquosas diluídas formam estruturas fractais, cuja geometria pode ser caracterizada por meio de turbidimetria. Entretanto, a faixa de comprimento de onda usada (400 a 550 nm) ainda é pequena para se afirmar sobre a natureza fractal de AH e determinar suas dimensões fractais com precisão.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho teve por objetivo explorar a aplicabilidade da teoria de fractais no estudo da variabilidade espacial em agregação de solo. A geometria de fractais tem sido proposta como um modelo para a distribuição de tamanho de partículas. A distribuição do tamanho de agregados do solo, expressos em termos de massa, é apresentada. Os parâmetros do modelo, tais como: a dimensão fractal D, medida representativa da fragmentação do solo (quanto maior seu valor, maior a fragmentação), e o tamanho do maior agregado R L foram definidos como ferramentas descritivas para a agregação do solo. Os agregados foram coletados em uma profundidade de 0-10 cm de um Latossolo Vermelho distrófico típico álico textura argilosa, em Angatuba, São Paulo. Uma grade regular de 100 x 100 m foi usada e a amostragem realizada em 76 pontos nos quais se determinou a distribuição de agregados por via úmida, usando água, álcool e benzeno como pré-tratamentos. Pelo exame de semivariogramas, constatou-se a ocorrência de dependência espacial. A krigagem ordinária foi usada como interpolador e mapas de contorno mostraram-se de grande utilidade na descrição da variabilidade espacial de agregação do solo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Baseado nos conceitos da geometria fractal e nas leis de Laplace e de Poiseuille, foi criado um modelo geral para estimar a condutividade hidráulica de solos não saturados, utilizando a curva de retenção da água no solo, conforme representada por um modelo em potência. Considerando o fato de que este novo modelo da condutividade hidráulica introduz um parâmetro de interpolação ainda desconhecido, e que, por sua vez, depende das propriedades dos solos, a validação do modelo foi realizada, utilizando dois valores-limite fisicamente representativos. Para a aplicação do modelo, os parâmetros de forma da curva de retenção da água no solo foram escolhidos de maneira a se obter o modelo de van Genuchten. Com a finalidade de obter fórmulas algébricas da condutividade hidráulica, foram impostas relações entre seus parâmetros de forma. A comparação dos resultados obtidos com o modelo da condutividade e a curva experimental da condutividade dos dois solos, Latossolo Vermelho-Amarelo e Argissolo Amarelo, permitiu concluir que o modelo proposto é simples em sua utilização e é capaz de predizer satisfatoriamente a condutividade hidráulica dos solos não saturados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Motor changes in major depression (MD) may represent potential markers of treatment response. Physiological rhythms (heart rate/gait cycle/hand movements) have been recently shown to be neither random nor regular but to display a fractal temporal organisation, possibly reflecting a unique central "internal clock" control. Sleep and mood circadian rhythm modifications observed in MD also suggest a role for this "internal clock". We set out to examine the fractal pattern of motor activity in MD. METHODS: Ten depressed patients (46±20 years) and ten age- and gender-matched healthy controls (48±21 years) underwent a 6-h ambulatory monitoring of spontaneous hand activity with a validated wireless device. Fractal scaling exponent (α) was analysed. An α value close to 1 means the pattern is fractal. RESULTS: Healthy controls displayed a fractal pattern of spontaneous motor hand activity (α: 1.0±0.1), whereas depressed patients showed an alteration of that pattern (α:1.2±0.15, p<0.01), towards a smoother organisation. CONCLUSION: The alteration of fractal pattern of hand activity by depression further supports the role of a central internal clock in the temporal organisation of movements. This novel way of studying motor changes in depression might have an important role in the detection of endophenotypes and potential predictors of treatment response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal mathematics has been used to characterize water and solute transport in porous media and also to characterize and simulate porous media properties. The objective of this study was to evaluate the correlation between the soil infiltration parameters sorptivity (S) and time exponent (n) and the parameters dimension (D) and the Hurst exponent (H). For this purpose, ten horizontal columns with pure (either clay or loam) and heterogeneous porous media (clay and loam distributed in layers in the column) were simulated following the distribution of a deterministic Cantor Bar with fractal dimension H" 0.63. Horizontal water infiltration experiments were then simulated using Hydrus 2D software. The sorptivity (S) and time exponent (n) parameters of the Philip equation were estimated for each simulation, using the nonlinear regression procedure of the statistical software package SAS®. Sorptivity increased in the columns with the loam content, which was attributed to the relation of S with the capillary radius. The time exponent estimated by nonlinear regression was found to be less than the traditional value of 0.5. The fractal dimension estimated from the Hurst exponent was 17.5 % lower than the fractal dimension of the Cantor Bar used to generate the columns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-world images are complex objects, difficult to describe but at the same time possessing a high degree of redundancy. A very recent study [1] on the statistical properties of natural images reveals that natural images can be viewed through different partitions which are essentially fractal in nature. One particular fractal component, related to the most singular (sharpest) transitions in the image, seems to be highly informative about the whole scene. In this paper we will show how to decompose the image into their fractal components.We will see that the most singular component is related to (but not coincident with) the edges of the objects present in the scenes. We will propose a new, simple method to reconstruct the image with information contained in that most informative component.We will see that the quality of the reconstruction is strongly dependent on the capability to extract the relevant edges in the determination of the most singular set.We will discuss the results from the perspective of coding, proposing this method as a starting point for future developments.