911 resultados para fluoride effect on enamel remineralization
Resumo:
Objectives: This in situ study evaluated the effect of an erosive challenge on different restorative materials and on enamel restored with these materials, as well as the ability of these materials to protect the adjacent enamel against erosion. Methods: Ten volunteers wore palatal devices with eight bovine enamel blocks, randomly selected and distributed into two vertical rows, corresponding to the following groups: GI/GV, resin-modified glass ionomer; GII/GVI, conventional glass ionomer; GIII/GVII, composite resin; GIV/GVIII, amalgam. one row (corresponding to groups I-IV) was immersed in a cola drink and the other row (corresponding to groups V-VIII) was subjected to saliva only. The palatal device was continuously worn for 7 days and only half of the appliance (groups I-IV) was immersed in the soft drink (Coca-Cola (R), 150 mL) for 5 min, three times a day. The study variables comprised the wear (profilometry, mu m) and the percentage of surface microhardness change (%SMHC). Data were tested for significant differences by two-way ANOVA and Tukey`s tests (p < 0.05). Results: Considering the restorative materials, for %SMHC and wear, there were no differences among the materials and between the saliva and the erosive challenge. For enamel analyses, the erosive challenge promoted a higher wear and %SMHC of the enamel than did the saliva. There were no significant differences in wear and %SMHC of the enamel adjacent to the different restorative materials. Conclusion: This research data suggest that there is little %SMHC and wear of the studied restorative materials and none of them had a preventive effect against erosion on adjacent enamel, which showed a pronounced wear. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This in situ/ex vivo study assessed the effect of fluoride dentifrice on eroded enamel subjected to brushing abrasion. In a crossover study performed in 2 phases, 10 volunteers wore acrylic palatal appliances, each containing 3 human enamel blocks. Dentifrice was used to brush the volunteers' teeth and the specimens subjected to abrasion. In phases A and B the dentifrices used had the same formulation, except for the absence or presence of fluoride, respectively. The blocks were subjected to erosion by immersion of the appliances in a cola drink for 5 min, 4 times a day. Then the blocks were brushed, and the appliance was replaced into the mouth. Enamel alterations were determined using profilometry and percentage change in surface microhardness (%SMHC) tests. The data were tested using the paired t test. The mean wear values (+/- SD, mu m) were: group A 6.84 +/- 1.72 and group B 5.38 +/- 1.21 (p = 0.04). The mean %SMHC values (+/- SD) were: group A 54.6 +/- 16.2 and group B 45.7 +/- 6.8 (p = 0.04). Fluoride dentifrice had a protective effect on eroded enamel subjected to brushing abrasion. Copyright (c) 2007 S. Karger AG, Basel.
Resumo:
Objectives: This in situ/ex vivo study evaluated whether a rinse with an iron solution could reduce wear and the percentage of microhardness change of human enamel and dentine submitted to erosion followed by brushing after 1 or 30 min.Design: During 2 experimental 5-day crossover phases (wash-out period of 10 days), 10 volunteers wore intraoral palatal devices, with 12 specimens (6 of enamel and 6 of dentine) arranged in 3 horizontal rows (4 specimens each). In one phase, the volunteers immersed the device for 5 min in 150 mL of cola drink, 4 times a day. Immediately after immersion, no treatment was performed in one row. The other row was brushed after 1 min using a fluoride dentifrice and the device was replaced into mouth. After 30 min, the remaining row was brushed. In the other phase, the procedures were repeated, but after immersion the volunteers rinsed for 1 min with 10 mL of a 10 mM ferrous sulphate solution. Changes in surface microhardness (%SMH) and wear (profilometry) of enamel and dentine were measured. Data were tested using ANOVA and Tukey's tests (p < 0.05).Results: the enamel presented more wear than dentine, under all experimental conditions. The iron solution caused a significant reduction on the %SMH in enamel, and a significant reduction on the wear in dentine, regardless the other conditions.Conclusions: Rinsing with an iron solution after an erosive attack, followed or not by an abrasive episode, may be a viable alternative to reduce the loss of dental structure. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to assess the salivary residual effect of fluoride dentifrice on human enamel subjected to an erosive challenge. This crossover in situ study was performed in two phases (A and B), involving ten volunteers. In each phase, they wore acrylic palatal appliances, each containing 3 human enamel blocks, during 7 days. The blocks were subjected to erosion by immersion of the appliances in a cola drink for 5 minutes, 4 times a day. Dentifrice was used to brush the volunteers' teeth, 4 times a day, during 1 minute, before the appliance was replaced into the mouth. In phases A and B the dentifrices used had the same formulation, except for the absence (PD) or presence (FD) of fluoride, respectively. Enamel alterations were determined using profilometry, microhardness (%SMHC), acid- and alkali-soluble F analysis. The data were tested using ANOVA (p < 0.05). The concentrations (mean ± SD) of alkali- and acid-soluble F (μgF/cm 2) were, respectively, PD: 1.27 a ± 0.70/2.24∧ A ± 0.36 and FD: 1.49 a ± 0.44/2.24∧ ± 0.67 (p > 0.05). The mean wear values (± SD, μm) were PD: 3.63 a ± 1.54 and FD: 3.54 a ± 0.90 (p > 0.05). The mean %SMHC values (± SD) were PD: 89.63 a ± 4.73 and FD: 87.28 a ± 4.01 (p > 0.05). Thus, we concluded that the residual fluoride from the fluoride-containing dentifrice did not protect enamel against erosion.
Resumo:
The aim of this in vitro study was to evaluate the shear bond strength of brackets after pre-treatment with different fluoride solutions. This study used 48 freshly extracted sound bovine incisors that were randomly assigned to 4 experimental groups (n=12). CG: (control) without treatment; NF: 4 min application of neutral fluoride; APF: application of 1.23% acidulated phosphate fluoride (APF) for 4 min; and SFV: application of 5% sodium fluoride varnish for 6 h. For each group, after surface treatment, prophylaxis of enamel and bracket bonding with Transbond XT composite resin (3M) were performed following the manufacturer's specifications. The shear bond strength was performed with a universal testing machine 24 h after fixing the brackets. The tooth surfaces were analyzed to verify the adhesive remnant index (ARI). Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). There was statistically significant difference among the groups (p<0.0001). CG and NF groups presented significantly higher bond strength than APF and SFV. There was no significant difference between CG and NF or between APF and SFV (p>0.05). The analysis of ARI scores revealed that most failures occurred at the enamel-resin interface. It may be concluded that the pre-treatment of enamel with 1.23% APF and 5% SFV prior to fixing orthodontic brackets reduces shear bond strength values.
Resumo:
Objective: The aim of this study was to investigate the effectiveness of sodium trimetaphosphate (TMP) addition to mouth rinses to inhibit enamel demineralization. Design: Bovine enamel blocks (n = 88) were selected by surface hardness and divided into eight treatment groups (n = 11 per group): placebo, 100 or 225 μg F/ml; the rinses with 100 μg F/ml had differing TMP concentrations (range 0-0.6%). The blocks were subjected to pH cycling for 5 days and treated twice a day with mouth rinses. After that, surface and cross-sectional hardness as well as fluoride in enamel were measured. Results: The groups containing both 100 μg F/ml and 0.4% TMP inhibited demineralization most effectively (p < 0.001). This formulation yielded lower values of lesion areas than the formulations containing 100 or 225 μg F/ml but no TMP. The addition of 0.4% TMP increased the fluoride in enamel. Conclusion: It is possible to improve the effectiveness of a mouth rinse with 100 μg F/ml by addition of TMP, this being superior in inhibiting enamel demineralization compared with mouth rinses containing 225 μg F/ml. © 2013 S. Karger AG, Basel.
Resumo:
This study evaluated the in vitro enamel remineralization capacity of experimental composite resins containing sodium trimetaphosphate (TMP) combined or not with fluoride (F). Bovine enamel slabs were selected upon analysis of initial surface hardness (SH1) and after induction of artificial carious lesions (SH2). Experimental resins were as follows: resin C (control-no sodium fluoride (NaF) or TMP), resin F (with 1.6 % NaF), resin TMP (with 14.1 % TMP), and resin TMP/F (with NaF and TMP). Resin samples were made and attached to enamel slabs (n = 12 slabs per material). Those specimens (resin/enamel slab) were subjected to pH cycling to promote remineralization, and then final surface hardness (SH3) was measured to calculate the percentage of surface hardness recovery (%SH). The integrated recovery of subsurface hardness (ΔKHN) and F concentration in enamel were also determined. Data was analyzed by ANOVA and Student-Newman-Keuls test (p < 0.05). Resins F and TMP/F showed similar SH3 values (p = 0.478) and %SH (p = 0.336) and differed significantly from the other resins (p < 0.001). Considering ΔKHN values, resin TMP/F presented the lowest area of lesion (p < 0.001). The presence of F on enamel was different among the fluoridated resins (p = 0.042), but higher than in the other resins (p < 0.001). The addition of TMP to a fluoridated composite resin enhanced its capacity for remineralization of enamel in vitro. The combination of two agents with action on enamel favored remineralization, suggesting that composite resins containing sodium trimetaphosphate and fluoride could be indicated for clinical procedures in situations with higher cariogenic challenges.
Resumo:
The aim of this study was to evaluate the ability of conventional toothpastes (1100 ppm F) supplemented with sodium trimetaphosphate (TMP) in demineralization. Blocks of enamel were selected and then divided into seven experimental groups of 12: toothpaste without F and TMP (placebo), toothpaste with 1100 ppm F (1100), and toothpaste with 1100 ppm F supplemented with TMP-1 % (1100 1 % TMP), 3 % (1100 3 % TMP), 4.5 % (1100 4.5 % TMP), 6 % (1100 6 % TMP), and 9 % (1100 9 % TMP). Blocks were subjected to five pH cycles (demineralizing/remineralizing solutions) at 37 °C and treated with toothpaste slurries twice daily, after which the blocks were maintained for 2 days in fresh remineralizing solution. Following treatments, surface hardness (SHf) and cross-sectional hardness were determined for calculating the integrated loss of subsurface hardness (ΔKHN). The fluoride present in the enamel was also measured. The SHf and ΔKHN measurements showed that supplementation with 3 % TMP was the most effective (p < 0.001) and showed greater concentration of F in the enamel (p < 0.001). Addition of 3 % TMP to a conventional toothpaste (1100 ppm F) showed greater efficacy in reducing enamel demineralization. Fluoride toothpastes containing trimetaphosphate possess good anticaries potential required to reduce the prevalence of dental caries in high-risk patients.
Resumo:
Objective. Previous in vitro study has shown that TiF(4) varnish might reduce enamel erosion. No data regarding the effect of this experimental varnish on enamel erosion plus abrasion, however, are available so far. Thus, this in vitro study aimed to analyse the effect of TiF4 compared with NaF varnishes and solutions, to protect against enamel erosion with or without abrasion. Methods. Enamel specimens were pre-treated with experimental-TiF4 (2.45% F), experimentalNaF (2.45% F), NaF-Duraphat (2.26% F), and placebo varnishes; NaF (2.26% F) and TiF4 (2.45% F) solutions. Controls remained untreated. The erosive challenge was performed using a soft drink (pH 2.6) 4 u 90 s / day (ERO) and the toothbrushing abrasion (ERO+ ABR) 2 u 10 s / day, for 5 days. Between the challenges, the specimens were exposed to artificial saliva. Enamel loss was measured profilometrically (lm). Results. Kruskal-Wallis / Dunn tests showed that all fluoridated varnishes (TiF4-ERO: 0.53 +/- 0.20, ERO+ ABR: 0.65 +/- 0.19/ NaF-ERO: 0.94 +/- 0.18, ERO+ ABR: 1.74 +/- 0.37 / Duraphat-ERO: 1.00 +/- 0.37, ERO+ ABR: 1.72 +/- 0.58) were able to significantly reduce enamel loss when compared with placebo varnish (ERO: 3.45 +/- 0.41 / ERO+ ABR: 3.20 +/- 0.66) (P < 0.0001). Placebo varnish, control (ERO: 2.68 +/- 0.53 / ERO+ ABR: 3.01 +/- 0.34), and fluoridated (NaF-ERO: 2.84 +/- 0.09 / ERO+ ABR: 2.40 +/- 0.21 / TiF4-ERO: 3.55 +/- 0.59 / ERO+ ABR: 4.10 +/- 0.38) solutions did not significantly differ from each other. Conclusion. Based on the results, it can be concluded that the TiF4 varnish seems to be a promising treatment to reduce enamel loss under mild erosive and abrasive conditions in vitro.
Resumo:
Background and Objectives: Er:YAG laser has been used for caries removal and cavity preparation, using ablative parameters. Its effect on the margins of restorations submitted to cariogenic challenge has not yet been sufficiently investigated. The aim of this study was to assess the enamel adjacent to restored Er:YAG laser-prepared cavities submitted to cariogenic challenge in situ, under polarized light microscopy. Study Design/Materials and Methods: Ninety-one enamel slabs were randomly assigned to seven groups (n = 13): I, II, III-Er:YAG laser with 250 mJ, 62.5 J/cm(2), combined with 2, 3, and 4 Hz, respectively; IV, V, VI-Er:YAG laser with 350 mJ, 87.5 J/cm(2), combined with 2, 3, and 4 Hz, respectively; VII-High-speed handpiece (control). Cavities were restored and the restorations were polished. The slabs were fixed to intra-oral appliances, worn by 13 volunteers for 14 days. Sucrose solution was applied to each slab six times per day. Samples were removed, cleaned, sectioned and ground to polarized light microscopic analysis. Demineralized area and inhibition zone width were quantitatively assessed. Presence or absence of cracks was also analyzed. Scores for demineralization and inhibition zone were determined. Results: No difference was found among the groups with regard to demineralized area, inhibition zone width, presence or absence of cracks, and demineralization score. Inhibition zone score showed difference among the groups. There was a correlation between the quantitative measures and the scores. Conclusion: Er:YAG laser was similar to high-speed handpiece, with regard to alterations in enamel adjacent to restorations submitted to cariogenic challenge in situ. The inhibition zone score might suggest less demineralization at the restoration margin of the irradiated substrates. Correlation between the quantitative measures and scores indicates that score was, in this case, a suitable complementary method for assessment of caries lesion around restorations, under polarized light microscopy. Lasers Surg. Med. 40:634-643, 2008. (c) 2008 Wiley-Liss, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: This in situ study evaluated the effect of an erosive challenge on different restorative materials and on enamel restored with these materials, as well as the ability of these materials to protect the adjacent enamel against erosion.Methods: Ten volunteers wore palatal devices with eight bovine enamel blocks, randomly selected and distributed into two vertical rows, corresponding to the following groups: GI/GV, resin-modified glass ionomer; GII/GVI, conventional glass ionomer; GIII/GVII, composite resin; GIV/GVIII, amalgam. one row (corresponding to groups I-IV) was immersed in a cola drink and the other row (corresponding to groups V-VIII) was subjected to saliva only. The palatal device was continuously worn for 7 days and only half of the appliance (groups I-IV) was immersed in the soft drink (Coca-Cola (R), 150 mL) for 5 min, three times a day. The study variables comprised the wear (profilometry, mu m) and the percentage of surface microhardness change (%SMHC). Data were tested for significant differences by two-way ANOVA and Tukey's tests (p < 0.05).Results: Considering the restorative materials, for %SMHC and wear, there were no differences among the materials and between the saliva and the erosive challenge. For enamel analyses, the erosive challenge promoted a higher wear and %SMHC of the enamel than did the saliva. There were no significant differences in wear and %SMHC of the enamel adjacent to the different restorative materials.Conclusion: This research data suggest that there is little %SMHC and wear of the studied restorative materials and none of them had a preventive effect against erosion on adjacent enamel, which showed a pronounced wear. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This in vitro study evaluated the effect of erosive pH cycling on the percentage of surface micro-hardness change (%SMHC) and wear of different restorative materials and bovine enamel restored with these materials. Eighty enamel specimens were randomly divided into eight groups according to the restorative materials and immersion media used: GI/GV-resin-modifled glass-ionomer, GII/GVI-conventional glass-ionomer, GIII/GVII-resin composite and GIV/GVIII-amalgam. Over a period of seven days, groups GI to GIV were immersed in a cola drink (ERO) for 5 minutes, 3x/day and kept in artificial saliva between erosive cycles. Groups GV to GVIII were immersed in artificial saliva (SAL) throughout the entire experimental period (control). Data were tested for significant differences using ANOVA and Tukey's tests (p < 0.05). For %SMHC, considering the restorative materials, no significant differences were detected among the materials and immersion media. Mean wear was higher for the resin modified glass ionomer cement when compared to conventional cement, but those materials did not significantly differ from the others. For enamel analyses, erosive pH cycling promoted higher wear and %SMHC compared to saliva. There were no significant differences in wear and %SMHC of enamel around the different restorative materials, regardless of the distance from the restorative material (50, 150 or 300 mu m). In conclusion, there were only subtle differences among the materials, and these differences were not able to protect the surrounding enamel from erosion.
Resumo:
Objective: In this paper we evaluated the effect of two fluoridated agents and Nd:YAG irradiation separately and in combination on dentine resistance to erosion. Background Data: The morphological changes in dentin induced by laser treatment may reduce the progression of erosive lesions. Due to the possibility of a synergistic effect of laser with fluoride, this study was conducted. Materials and Methods: Eighty bovine dentine samples (4 x 4 mm) were randomly divided into eight groups, according to the following treatments: G1: untreated (control); G2: acidic phosphate fluoride gel (APF 1.23%) for 4 min; G3: fluoride varnish (NaF 2.26%) for 6 h; G4: 0.5 W Nd: YAG laser (250 mu sec pulse, 10 Hz, 35 J/cm(2), 30 sec); G5: 0.75 W Nd: YAG laser (52.5 J/cm(2)); G6: 1.0 W Nd: YAG laser (70 J/cm(2)); G7: APF + 0.75 W Nd: YAG laser; and G8: NaF + 0.75 W Nd: YAG laser. After the treatments, half of each dentine surface was protected with nail varnish. The samples were stored in artificial saliva (30 mL/sample) for 24 h and submitted to four erosive 1-min cycles. Between the erosive attacks, the blocks were maintained in artificial saliva for 59 min. The erosive wear was evaluated by profilometry. Results: The mean wear (+/- SD, mu m) was: G1: 1.20 +/- 0.20; G2: 0.47 +/- 0.06; G3: 0.81 +/- 0.11; G4: 1.47 +/- 0.32; G5: 1.52 +/- 0.24; G6: 1.49 +/- 0.30; G7: 0.49 +/- 0.11; and G8: 1.06 +/- 0.31 (Tukey's test, p < 0.05). Conclusions: Laser irradiation was not able to reduce dentine erosion. However, fluoride application was able to increase the dentine's resistance to erosion, and APF showed better results than fluoride varnish.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)