809 resultados para fish-ponds
Resumo:
The world demand for fish and fishery products is increasing steadily and it is generally accepted that it will not be possible to meet the heavy demand with resources exploited from capture fishery alone. Now aquaculture is well established and fastdeveloping industry in many countries and is a major focus sector for development. During recent decades, aquaculture has gained momentum, throughout the world especially in developing countries. According to Food and Agricultural Oganisation (FAO, 2000), global aquaculture production was 26.38 tones in 1996 have reached 32.9 million tonnes during 1999. Only marine aquaculture sector has contributed 13.1 million tonnes during 1999.India is a major fish producing country. About one half of lndia’s brackish water lands are currently being utilized for farming in order to reduce the gap between supply and demand for fish. Aquaculture has become a major source of livelihood for people and its role in integrated rural development, generation of employment and earning foreign exchange, thereby alleviating poverty is being greatly appreciated around the world.Among the infectious agents, bacteria are becoming the prime causal organisms for diseases in food fishes and other marine animals. Sindermann, (1970) reported that bacterial fish pathogen most commonly found among marine fishes is species of Pseudomonas, Vibrio and Mycobacterium. These can be categorized into primary pathogens; secondary invaders that may cause systemic disease in immunocompromised hosts; and normal marine flora which are not pathogenic but may occur on body surfaces or even within the tissues of the host. I-Iigh density of animals in hatchery tanks and ponds is conducive to the spread of pathogen and the aquatic environment with regular application of protein rich feed, is ideal for culturing bacteria. Bacteria, which are normally present in seawater or on the surface of fish, can invade and cause pathological effects in fishes, which are injured or subjected to other environmental stresses.Mycobacteria except parasites are known as nontuberculosis mycobacteria (NTM), atypical mycobacteria or mycobacteria other than tuberculosis(MO'l'l"). This group of mycobacteria includes opportunistic pathogens and saprophytes. Environmental mycobacteria are ubiquitous in distribution and the sources may include soil, water, warm-blooded as well as cold-blooded animals. Disease caused by environmental mycobacterial strains in susceptible humans (Goslee & Wolinsky, 1976; Grange, 1987), animals and fishes are increasingly attracting attention. Greatest importance of environmental mycobacteria is believed to be their role in immunological priming of humans and animals, thereby modifying their immune responses to subsequent exposure to pathogenic species.
Resumo:
Performance and economic indicators of a large scale fish farm that produces round fish, located in Mato Grosso State, Brazil, were evaluated. The 130.8 ha-water surface area was distributed in 30 ponds. Average total production costs and the following economic indicators were calculated: gross income (GI), gross margin (GM), gross margin index (GMI), profitability index (PI) and profit (P) for the farm as a whole and for ten ponds individually. Production performance indicators were also obtained, such as: production cycle (PC), apparent feed conversion (FC), average biomass storage (ABS), survival index (SI) and final average weight (FAW). The average costs to produce an average 2.971 kg.ha-1 per year were: R$ 2.43, R$ 0.72 and R$ 3.15 as average variable, fixed and total costs, respectively. Gross margin and profit per year per hectare of water surface were R$ 2,316.91 and R$ 180.98, respectively. The individual evaluation of the ponds showed that the best pond performance was obtained for PI 38%, FC 1.7, ABS 0.980 kg.m-2, TS 56%, FAW 1.873 kg with PC of 12.3 months. The worst PI was obtained for the pond that displayed losses of 138%, FC 2.6, ABS 0.110 kg.m-2, SI 16% and FAW 1.811 kg. However, large scale production of round-fish in farms is economically feasible. The studied farm displays favorable conditions to improve performance and economic indicators, but it is necessary to reproduce the breeding techniques and performance indicators achieved in few ponds to the entire farm.
Resumo:
Five-day-old pacu larvae (Piaractus mesopotamicus) with average length and weight of 5.96 mm and 0.42 mg, respectively, were reared as follows: in a semi-intensive system with larvae stocked directly into fertilized ponds (IL0)-and an initial intensive larviculture system with larvae maintained in a laboratory for 3 (IL3), 6 (IL6) and 9 (IL9) days, before being transferred to fertilized ponds. During the indoor phase, larvae were fed Artemia nauplii. Intensive-culture survivals were high (95.6%, 86.4% and 83.8% for IL3, IL6 and IL9, respectively) and at the end of the 45-day period, the longer the larvae were kept in the intensive system, the better the juvenile survival in the ponds. IL9 and IL6 survival rates were 54.0% and 45.4%, respectively, significantly higher (P < 0.05) than IL0 (11%) and IL3 presented an intermediate rate (25.3%). Due to the low survival rate of IL0, length and weight were higher (P < 0.05) when compared to IL6 and IL9; and the differences between their survival rates affected size distribution of juveniles among treatments. Treatments, which resulted in high survival (IL6 and IL9), presented a great number of small fish. In contrast, IL0 and IL3 produced many large and extra large individuals. In general, the results indicate that pacu juvenile production by initial intensive larviculture (IL6 and IL9) was the most efficient method. Therefore, further studies should be conducted in order to improve larval growth in the laboratory and handling techniques in both the laboratory and ponds. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The increased demand for juvenile tambaqui Colossoma macropomum for grow-out ponds and stocking programs in the Amazon state of Brazil has increased the transportation of this species. This study was designed to determine the optimum density of juvenile tambaqui during transportation in closed containers. Fish (51.9 ± 3.3 g and 14.9 ± 0.4 cm) were packed in sealed plastic bags and transported for 10 h at four densities: 78, 156, 234, and 312 kg/m3. After transportation, fish from each density were kept in separate 500-L tanks for 96 h. Mortality, 96-h cumulative mortality, water quality, and blood parameters (hematocrit, plasma cortisol, and glucose) were monitored. Fish mortality after transportation was significantly lower at densities of 78 and 156 kg/m3 than at 234 and 312 kg/m3. Cumulative mortality was significantly lower at a density of 78 kg/m3. Dissolved oxygen after 10 h of transportation remained high at a density of 78 kg/m3, but reached critically low values at all other densities. Ammonia concentration was highest at the lowest density and was lower at higher densities. Carbon dioxide concentration was lowest at the density of 78 kg/m3 but higher in the other treatments. Plasma glucose and cortisol increased significantly immediately after transportation at densities of 156, 234, and 312 kg/m3, returning to control values by 24 h. The best density for juvenile tambaqui during a 10-h transportation haul in a closed container was 78 kg/m3. At this density there was no fish mortality, water quality was kept within acceptable values, and fish were not stressed.
Resumo:
Channel catfish ponds are treated with salt (sodium chloride) to increase chloride concentration and prevent nitrite toxicity in fish. A survey indicated that most farmers try to maintain chloride concentration of 50 to 100 mg/L in ponds by annual salt applications. Averages and standard deviations for selected water quality variables in salt-treated ponds were as follows: chloride, 87.2 ± 37.5 mg/L; total dissolved solids (TDS), 336 ± 96 mg/L; specific conductance, 512 ± 164 μmhos/cm. Maximum values were 189 mg/L for chloride, 481 mg/L for TDS, and 825 μmhos/cm for specific conductance. Good correlations between specific conductance values and both chloride and TDS concentrations suggest that specific conductance can be a rapid method for estimating concentrations of these two variables in surface water. The maximum limit for chloride concentration in Alabama streams allowed by the Alabama Department of Environmental Management is 230 mg/L. The usual recommended upper limit of TDS for protection of aquatic life in freshwater streams is 1,000 mg/L. Based on the observed relationship between TDS concentration and specific conductance in Alabama catfish ponds, 1,000 mg/L TDS corresponds to 1,733 μmhos/cm specific conductance. It is unlikely that effluents from salt-treated catfish ponds would violate the in-stream chloride standard of 230 mg/L or harm aquatic life in streams. Nevertheless, chloride concentrations in ponds should be measured before salt application as a safe guard against excessive salt application and chloride concentrations above the in-stream chloride standard.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references (pages 76-78).
Resumo:
Mode of access: Internet.
Resumo:
Amyloodinium ocellatum, a frequently encountered parasite in marine aquaculture, was investigated to determine if infective dinospore stages could be transported in aerosol droplets. We used an in vivo model incorporating static and dynamic airflow systems and found dinospores of A. ocellatum could travel in aerosol droplets (up to 440 turn in a static system and up to 3 m in a dynamic one). This is the first record of this transmission pathway for a marine protozoan parasite. It is possible that other marine protozoans can transfer via the aerobiological pathway. Management of A. ocellatum infections in aquaculture facilities could be affected, particularly where tanks and ponds are situated in close proximity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Our main goal was to determine if fish distribution and adundance in temporary wetlands were shaped primarily by large-scale (landscape) or small-scale (local) characteristics and to investigate the influence of cattle ranching on fish assemblages. A total of 24 temporary ponds were selected at the Kissimmee Prairie Sanctuary and the Mac- Arthur Agro-Ecology Research Center. Each wetland was sampled for fish using throw traps and dip nets during 1999. Landscape processes (connectivity to permanent water bodies) predominately influenced fish assemblages, although local processes (depth–hydroperiod) were also important. Furthermore, no colonizing species went locally extinct before wetlands began to dry. Our findings suggest that large-scale processes that influence colonization dynamics are of more importance than small-scale processes that influence extinction dynamics. Finally, hydrological changes (ditching) associated with agriculture (cattle ranching) have adversely affected temporary wetland fish assemblages by reducing wetland hydroperiods and connectivity.
Resumo:
Invasive species pose a major threat to aquatic ecosystems. Their impact can be particularly severe in tropical regions, like those in northern Australia, where >20 invasive fish species are recorded. In temperate regions, environmental DNA (eDNA) technology is gaining momentum as a tool to detect aquatic pests, but the technology's effectiveness has not been fully explored in tropical systems with their unique climatic challenges (i.e. high turbidity, temperatures and ultraviolet light). In this study, we modified conventional eDNA protocols for use in tropical environments using the invasive fish, Mozambique tilapia (Oreochromis mossambicus) as a detection model. We evaluated the effects of high water temperatures and fish density on the detection of tilapia eDNA, using filters with larger pores to facilitate filtration. Large-pore filters (20 μm) were effective in filtering turbid waters and retaining sufficient eDNA, whilst achieving filtration times of 2-3 min per 2-L sample. High water temperatures, often experienced in the tropics (23, 29, 35 °C), did not affect eDNA degradation rates, although high temperatures (35 °C) did significantly increase fish eDNA shedding rates. We established a minimum detection limit for tilapia (1 fish/0.4 megalitres/after 4 days) and found that low water flow (3.17 L/s) into ponds with high fish density (>16 fish/0.4 megalitres) did not affect eDNA detection. These results demonstrate that eDNA technology can be effectively used in tropical ecosystems to detect invasive fish species. © 2016 John Wiley & Sons Ltd.
Resumo:
In order to evaluating Streptoccocus iniae pathogenicity recovered from trout in Fars province a total number of 400 healthy (15-20g) fingerling fish specimens which were kept in 1000 liters ponds and after spending compatibility (adaptation) period in new environment and desired condition as aspect of temperature, pH, food and density relative to accomplish disease experiments in interamusclar injection method with 3 × 10 3 , 3 × 10 4, 3 × 10 5, 3 × 10 6 ,3 × 10 7 bacterium cell dilutions per each fish, interaperitonal method with 2 × 10 3 , 2 × 10 4, 2 × 10 5, 2 × 10 6 ,2 × 10 7 dilutions of bacterium cell and in water bath method with 2 × 10 3 , 2 × 10 4, 2 × 10 5, 2 × 10 6 2 × 107 dilutions in 20 degree centigrade temperature were used. Control groups according to above (mentioned) method with 0.1cc sterile physiological serum per each fish were injected. Clinical and autopsy signs that observed in injected groups were includes: body darkness, swelling of abdomen, exophthalmy sometime with eye ocular haemorrhagy, anal (rectal) prolaps, blood congestion and petechia in muscles and congestion and haemorrhagy in intestines. Infectious results in interamusclar injection shown that, mortality 22 hours after injection begans and in 3 × 107 cells dilution per each fish 30 hours pass the injection was reached above 50 percent, so that the amount of LD50/ 30h in 3 × 10 7 cells per each fish was estimated. In interaperitonal injection method was shown those 20 hours after injection mortality begins and up to maximum 80 hours after continued and 32 hours after injection in 2 × 10 7 cells dilution mortality was reached above 50 percent, so that LD50 /32 hour in 2 × 10 7 cell dilution per each fish estimated. In water bath method even after sparing 15 days mortality had been too low which indicating long process of disease. By microscopic study of tissues, dilatation of bowman capsule, shrinkage of glomerols, increasing of melano macrophage centers, degeneration, necrosis of urine tubules in kidney tissue, dilatation of sinusoids, congestion of hepatic vessels, increasing of melanoma macrophages and hepatocite vacuolization in liver tissue, spleen congestion, heart pericardit, ocular haemorrhagy, congestion, edema and separating of basement membrane from gill secondary lamellae can be referred.
Resumo:
Performance and economic indicators of a large scale fish farm that produces round fish, located in Mato Grosso State, Brazil, were evaluated. The 130.8 ha-water surface area was distributed in 30 ponds. Average total production costs and the following economic indicators were calculated: gross income (GI), gross margin (GM), gross margin index (GMI), profitability index (PI) and profit (P) for the farm as a whole and for ten ponds individually. Production performance indicators were also obtained, such as: production cycle (PC), apparent feed conversion (FC), average biomass storage (ABS), survival index (SI) and final average weight (FAW). The average costs to produce an average 2.971 kg.ha-1 per year were: R$ 2.43, R$ 0.72 and R$ 3.15 as average variable, fixed and total costs, respectively. Gross margin and profit per year per hectare of water surface were R$ 2,316.91 and R$ 180.98, respectively. The individual evaluation of the ponds showed that the best pond performance was obtained for PI 38%, FC 1.7, ABS 0.980 kg.m-2, TS 56%, FAW 1.873 kg with PC of 12.3 months. The worst PI was obtained for the pond that displayed losses of 138%, FC 2.6, ABS 0.110 kg.m-2, SI 16% and FAW 1.811 kg. However, large scale production of round-fish in farms is economically feasible. The studied farm displays favorable conditions to improve performance and economic indicators, but it is necessary to reproduce the breeding techniques and performance indicators achieved in few ponds to the entire farm.
Resumo:
To verify whether fluorescence in situ hybridization (FISH) of cells from the buccal epithelium could be employed to detect cryptomosaicism with a 45,X lineage in 46,XY patients. Samples of nineteen 46,XY healthy young men and five patients with disorders of sex development (DSD), four 45,X/46,XY and one 46,XY were used. FISH analysis with X and Y specific probes on interphase nuclei from blood lymphocytes and buccal epithelium were analyzed to investigate the proportion of nuclei containing only the signal of the X chromosome. The frequency of nuclei containing only the X signal in the two tissues of healthy men did not differ (p = 0.69). In all patients with DSD this frequency was significantly higher, and there was no difference between the two tissues (p = 0.38), either. Investigation of mosaicism with a 45,X cell line in patients with 46,XY DSD or sterility can be done by FISH directly using cells from the buccal epithelium.
Resumo:
The present study analyzed metallothionein (MT) excretion from liver to bile in Nile Tilapia (Oreochromis niloticus) exposed to sub-lethal copper concentrations (2mgL(-1)) in a laboratory setting. MTs in liver and bile were quantified by spectrophotometry after thermal incubation and MT metal-binding profiles were characterized by size exclusion high performance liquid chromatography coupled to ICP-MS (SEC-HPLC-ICP-MS). Results show that liver MT is present in approximately 250-fold higher concentrations than bile MT in non-exposed fish. Differences between the MT profiles from the control and exposed group were observed for both matrices, indicating differential metal-binding behavior when comparing liver and bile MT. This is novel data regarding intra-organ MT comparisons, since differences between organs are usually present only with regard to quantification, not metal-binding behavior. Bile MT showed statistically significant differences between the control and exposed group, while the same did not occur with liver MT. This indicates that MTs synthesized in the liver accumulate more slowly than MTs excreted from liver to bile, since the same fish presented significantly higher MT levels in liver when compared to bile. We postulate that bile, although excreted in the intestine and partially reabsorbed by the same returning to the liver, may also release MT-bound metals more rapidly and efficiently, which may indicate an efficient detoxification route. Thus, we propose that the analysis of bile MTs to observe recent metal exposure may be more adequate than the analysis of liver MTs, since organism responses to metals are more quickly observed in bile, although further studies are necessary.