945 resultados para few-cycle laser pulses
Resumo:
Degenerate pump-probe reflectivity experiments have been performed on a single crystal of bismuth telluride (Bi2Te3) as a function of sample temperature (3 K to 296 K) and pump intensity using similar to 50 femtosecond laser pulses with central photon energy of 1.57 eV. The time-resolved reflectivity data show two coherently generated totally symmetric A(1g) modes at 1.85 THz and 3.6 THz at 296 K which blue-shift to 1.9 THz and 4.02 THz, respectively, at 3 K. At high photoexcited carrier density of similar to 1.7 x 10(21) cm(-3), the phonon mode at 4.02 THz is two orders of magnitude higher positively chirped (i.e the phonon time period decreases with increasing delay time between the pump and the probe pulses) than the lower-frequency mode at 1.9 THz. The chirp parameter, beta is shown to be inversely varying with temperature. The time evolution of these modes is studied using continuous-wavelet transform of the time-resolved reflectivity data. Copyright (C) EPLA, 2010
Resumo:
We report a dramatic change in effective three-photon absorption coefficient of amorphous Ge16As29Se55 thin films, when its optical band gap decreases by 10 meV with 532 nm light illumination. This large change provides valuable information on the higher excited states, which are otherwise inaccessible via normal optical absorption. The results also indicate that photodarkening in chalcogenide glasses can serve as an effective tool to tune the multiphoton absorption in a rather simple way. (C) 2011 American Institute of Physics.
Resumo:
Nonlinear absorption and refraction characteristics of cesium lithium borate (CsLiB6O10) crystal have been studied using Z-scan technique. Ti:sapphire laser with 110 fs pulse width operating at 800 nm wavelength and pulse repetition rate of 1 kHz is used as the source of photons. Intensity of the laser pulse is varied from 0.541 to 1.283 T W/cm2 to estimate the intensity dependence of multiphoton absorption coefficients. Using the theory of multiphoton absorption proposed by Sutherland [ Handbook of Nonlinear Optics, in 2nd ed., edited by D. G. McLean and S. Kirkpatrick, Dekker, New York (2003) ], found that open aperture Z-scan data fit well for the five-photon absorption (5PA) process. 5PA coefficients are obtained by fitting the expressions into the open aperture experimental data for various peak intensities (I00). The nonlinear refractive index n2 estimated from closed aperture Z-scan experiment is 1.075×10−4 cm2/T W at an input peak intensity of 0.723 T W/cm2. The above experiment when repeated with a 532 nm, 6 ns pulsed laser led to an irreversible damage of the sample resulting in an asymmetric open aperture Z-scan profile. This indicates that it is not possible to observe multiphoton absorption in this regime of pulse width using 532 nm laser.
Resumo:
The present study discusses the photosensitivity of GeS2 chalcogenide glass in response to irradiation with femtosecond pulses at 1047 nm. Bulk GeS2 glasses are prepared by conventional melt quenching technique and the amorphous nature of the glass is confirmed using X-ray diffraction. Ultrafast laser inscription technique is used to fabricate the straight channel waveguides in the glass. Single scan and multi scan waveguides are inscribed in GeS2 glasses of length 0.65 cm using a master oscillator power amplifier Yb doped fiber laser (IMRA mu jewel D400) with different pulse energy and translation speed. Diameters of the inscribed waveguides are measured and its dependence on the inscription parameters such as translation speed and pulse energy is studied. Butt coupling method is used to characterize the loss measurement of the inscribed optical waveguides. The mode field image of the waveguides is captured using CCD camera and compared with the mode field image of a standard SMF-28 fibers.
Resumo:
The dynamics and harmonics emission spectra due to electron oscillation driven by intense laser pulses have been investigated considering a single electron model. The spectral and angular distributions of the harmonics radiation are numerically analyzed and demonstrate significantly different characteristics from those of the low-intensity field case. Higher-order harmonic radiation is possible for a sufficiently intense driving laser pulse. A complex shifting and broadening structure of the spectrum is observed and analyzed for different polarization. For a realistic pulsed photon beam, the spectrum of the radiation is redshifted for backward radiation and blueshifted for forward radiation, and spectral broadening is noticed. This is due to the changes in the longitudinal velocity of the electron during the laser pulse. These effects are much more pronounced at higher laser intensities giving rise to even higher-order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that broadening of the high harmonic radiation can be limited by increasing the laser pulse width. The complex shifting and broadening of the spectra can be employed to characterize the ultrashort and ultraintense laser pulses and to study the ultrafast dynamics of the electrons. (c) 2006 American Institute of Physics.
Resumo:
Several schemes for coherent quantum control of atomic and molecular processes have been proposed and investigated by using the techniques of adiabatic passage and ultrashort pulses, respectively. Some interesting results have been found.
Resumo:
We investigate the ultrafast four-wave mixing (FWM) with two-color few-cycle ultrashort pulses propagating in a two-level polar molecule medium. It is found that the enhancement of FWM can be achieved even for low intensity pulses due to the effects of permanent dipole moments (PDM) in polar molecules. Moreover, the conversion efficiency of FWM can be controlled by the carrier-envelope phases (CEP) of two ultrashort pulses. (c) 2006 Optical Society of America
Resumo:
Nonlinear propagation of fs laser pulses in liquids and the dynamic processes of filamentation such as self-focusing, intensity clamping, and evolution of white light production have been analyzed by using one- and two-photon fluorescence. The energy losses of laser pulses caused by multiphoton absorption and conical emission have been measured respectively by z-scan technique. Numerical simulations of fs laser propagation in water have been made to explain the evolution of white light production as well as the small-scale filaments in liquids we have observed by a nonlinear fluorescence technique. (c) 2005 Optical Society of America.
Resumo:
Control of multiple filamentation by laser-induced microlens effect due to a nonlinear interaction of two overlapping laser beams inside a glass plate was demonstrated. Individual or multiple spots on the white light pattern which is a product of multiple filamentation through a mesh can be switched on and off with a very high contrast ratio on a femtosecond time scale. This phenomenon can find applications such as ultrafast optical switch and high-speed sampling. (C) 2005 American Institute of Physics.
Resumo:
Using time-of-flight spectrometry, the interaction of intense femtosecond laser pulses with argon clusters has been studied by measuring the energy and yield of emitted ions. With two different supersonic nozzles, the dependence of average ion energy (E) over bar on cluster size (n) over bar in a large range of (n) over bar approximate to 3 x 10(3) similar to 3 x 10(6) has been measured. The experimental results indicate that when the cluster size (n) over bar <= 3 x 10(5), the average ion energy (E) over bar proportional to (n) over bar (0.5), Coulomb explosion is the dominant expansion mechanism. Beyond this size, the average ion energy gets saturated gradually, the clusters exhibit a mixed Coulomb-hydrodynamic expansion behavior. We also find that with the increasing gas backing pressure, there is a maximum ion yield, the ion yield decreases as the gas backing pressure is further increased.
Resumo:
By means of the numerical solution of time-dependant Schrodinger equation, we verify a scaling law of photoionization in ultrashort pulses. We find that for a given carrier-envelope phase and duration of the pulse, identical photoionizations are obtained provided that when the central frequency of the pulse is enlarged by k times, the atomic binding potential is enlarged by k times, and the laser intensity is enlarged by k(3) times. The scaling law allows us to reach a significant control over direction of photoemission and offers exciting prospects of reaching similar physical processes in different interacting systems which constitutes a novel kind of coherent control.
Resumo:
The lifetime of a plasma channel produced by self-guiding intense femtosecond laser pulses in air is largely prolonged by adding a high voltage electrical field in the plasma and by introducing a series of femtosecond laser pulses. An optimal lifetime value is realized through adjusting the delay among these laser pulses. The lifetime of a plasma channel is greatly enhanced to 350 ns by using four sequential intense 100fs( FWHM) laser pulses with an external electrical field of about 350kV/m, which proves the feasibility of prolonging the lifetime of plasma by adding an external electrical field and employing multiple laser pulses. (c) 2006 Optical Society of America.
Resumo:
激光照射下光学材料的损伤过程中,导带电子的加热和碰撞电离是非常重要的过程,影响着导带电子的产生、晶格能量的沉积和破坏.分析了Drude模型的局限性,从经典力学出发求解了周期量级激光场中导带电子的运动方程,计算了导带电子的光吸收和碰撞电离,分析了激光强度、载波相位等对碰撞电离的影响.