985 resultados para fenoli adsorbimento green chemistry HPLC


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient and green synthesis of thiocarbamoyl-3,5-diaryl-4,5-dihydro-1 H-pyrazoles via the condensation of chalcones with thiosemicarbazide in ethanol and KOH under ultrasound irradiation is reported. The products were isolated in good yields after short reaction times. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alcohols and acids can be switched to produce ethers or esters by varying the alcohol to catalyst mol ratio, in a new etherification and esterification method using NbCl5/Al2O3 catalyst under ""solvent free"" conditions and promoted by MW (microwave) irradiation. A ""two sites"" mechanism for the reaction is proposed, in an attempt to clarify the tendency of the catalyst to be dependent on the alcohol alone during the esterification process. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The commercially available Jacobsen catalyst, Mn(salen), was occluded in hybrid polymeric membranes based on poly(dimethylsiloxane) (PDMS) and poly(vinyl alcohol) (PVA). The obtained systems were characterized by UV-vis spectroscopy and SEM techniques. The membranes were used as a catalytic barrier between two different phases: an organic substrate phase (cyclooctene or styrene) in the absence of solvent, and an aqueous solution of either t-BuOOH or H(2)O(2). Membranes containing different percentages of PVA were prepared, in order to modulate their hydrophilic/hydrophobic swelling properties. The occluded complex proved to be an efficient catalyst for the oxidation of alkenes. The new triphasic system containing a cheap and easily available catalyst allowed substrate oxidation and easy product separation using ""green"" oxidants. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laccases are multi-copper oxidases that oxidise a wide range of substrates including phenol and aniline derivatives, which could be further involved in coupling reactions leading to the formation of dimeric and trimeric structures. This paper describes the enzyme-mediated dimerisation of several ortho and meta, para-disubstituted aromatic amines into phenazine ("head-to-tail" dimers) and phenoxazinone chromophores. The redox properties of substituted aromatic amines were studied by cyclic voltammetry and the kinetic constants of CotA and Trametes versicolor laccases were measured for selected aromatic amines. The structure of novel enzymatically synthesised phenazine and phenoxazinone dyes using CotA laccase was assessed by NMR and MS. Overall our data show that this enzymatic green process is an efficient alternative to the classic chemical oxidation of aromatic amines and phenols, with an impact on the broad field of applications of these heterocyclic compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CotA laccase-catalysed oxidation of the meta, para-disubstituted arylamine 2,4-diaminophenyldiamine delivers, under mild reaction conditions, a benzocarbazole derivative (1) (74% yield), a key structural motif of a diverse range of applications. This work extends the scope of aromatic frameworks obtained using these enzymes and represents a new efficient and clean method to construct in one step C-C and C-N bonds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Bioengenharia (MIT)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation to obtain the degree of master in Chemical and Biochemical Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química Sustentável

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poster

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An overview is given of the recent work on in vitro enzymatic phosphorylation of silk fibroin and human hair keratin. Opposing to many chemical "conventional" approaches, enzymatic phosphorylation is in fact a mild reaction and the treatment falls within "green chemistry" approach. Silk and keratin are not phosphorylated in vivo, but in vitro. This enzyme-driven modification is a major technological breakthrough. Harsh chemical chemicals are avoided, and mild conditions make enzymatic phosphorylation a real "green chemistry" approach. The current communication presents a novel approach stating that enzyme phosphorylation may be used as a tool to modify the surface charge of biocompatible materials such as keratin and silk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An introduction to the fundamental concepts and main aspects of organic clean synthesis is given, and relevant industrial examples which have implemented the philosophy of cleaner synthesis are also presented. Recent trends in organic synthesis which are environmentally friendly are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For economical and ecological reasons, synthetic chemists are confronted with the increasing obligation of optimizing their synthetic methods. Maximizing efficiency and minimizing costs in the production of molecules and macromolecules constitutes, therefore, one of the most exciting challenges of synthetic chemistry. The ideal synthesis should produce the desired product in 100% yield and selectivity, in a safe and environmentally acceptable process. In this highlight the concepts of atom economy, molecular engineering and biphasic organometallic catalysis, which address these issues at the molecular level for the generation of "green" technologies, are introduced and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of microwave heating to organic synthesis is presented in a concise manner. Issues such as the history of the microwave oven, dielectric heating, reactions techniques (dry reactions, MORE chemistry), domestic ovens, microwave reactors, microwave effect and control of selectivities are discussed. Selected examples from the literature showed faster reactions, improved yields, less thermal degradations and cleaner reactions.