179 resultados para faulting
Resumo:
Geochemical examination of the rock matrix and cements from core material extracted from four oil wells within southwestern Ontario suggest various stages of diagenetic alteration and preservation of the Trenton Group carbonates. The geochemical compositions of Middle Ordovician (LMC) brachiopods reflect the physicochemical water conditions of the ambient depositional environment. The sediments appear to have been altered in the presence of mixed waters during burial in a relatively open diagenetic microenvironment. Conodont CAl determination suggests that the maturation levels of the Trenton Group carbonates are low and proceeded at temperatures of about 30 - 50°C within the shallow burial environment. The Trenton Group carbonates are characterized by two distinct stages of dolomitization which proceeded at elevated temperatures. Preexisting fracture patterns, and block faulting controlled the initial dolomitization of the precursor carbonate matrix. Dolomitization progressed In the presence of warm fluids (60 75°C) with physicochemical conditions characteristic of a progressively depleted basinal water. The matrix is mostly Idiotopic-S and Idiotopic-E dolomite, with Xenotopic-A dolomite dominating the matrix where fractures occur. The second stage of dolomitization involved hydrothermal basinal fluid(s) with temperatures of about 60 - 70°C. These are the postulated source for the saddle dolomite and blocky calcite cements occurring in pore space and fractures. Rock porosity was partly occluded by Idiotopic-E type dolomite. Late stage saddle dolomite, calcite, anhydrite, pyrite, marcasite and minor sphalerite and celestite cements effectively fill any remaining porosity within specific horizons. Based on cathode luminescence, precipitation of the different diagenetic phases probably proceeded in open diagenetic systems from chemically homogeneous fluids. Ultraviolet fluorescence of 11 the matrix and cements demonstrated that hydrocarbons were present during the earliest formation of saddle dolomite. Oxygen isotope values of -7.6 to -8.5 %0 (PDB), and carbon isotope values of - 0.5 and -3.0 %0 (PDB) from the latest stage dog-tooth calcite cement suggest that meteoric water was introduced into the system during their formation. This is estimated to have occurred at temperatures of about 25 - 40°C. Specific facies associations within the Trenton Group carbonates exhibit good hydrocarbon generating potential based on organic carbon preservation (1-3.5%). Thermal maturation and Lopatin burial-history evaluations suggest that hydrocarbons were generated within the Trenton Group carbonates some time after 300 Ma . Progressively depleted vanadium trends measured from hydrocarbon samples within southwestern Ontario suggests its potential use as a hydrocarbon migration indicator on local (within an oilfield) and on regional scales.
Resumo:
The country has witnessed tremendous increase in the vehicle population and increased axle loading pattern during the last decade, leaving its road network overstressed and leading to premature failure. The type of deterioration present in the pavement should be considered for determining whether it has a functional or structural deficiency, so that appropriate overlay type and design can be developed. Structural failure arises from the conditions that adversely affect the load carrying capability of the pavement structure. Inadequate thickness, cracking, distortion and disintegration cause structural deficiency. Functional deficiency arises when the pavement does not provide a smooth riding surface and comfort to the user. This can be due to poor surface friction and texture, hydro planning and splash from wheel path, rutting and excess surface distortion such as potholes, corrugation, faulting, blow up, settlement, heaves etc. Functional condition determines the level of service provided by the facility to its users at a particular time and also the Vehicle Operating Costs (VOC), thus influencing the national economy. Prediction of the pavement deterioration is helpful to assess the remaining effective service life (RSL) of the pavement structure on the basis of reduction in performance levels, and apply various alternative designs and rehabilitation strategies with a long range funding requirement for pavement preservation. In addition, they can predict the impact of treatment on the condition of the sections. The infrastructure prediction models can thus be classified into four groups, namely primary response models, structural performance models, functional performance models and damage models. The factors affecting the deterioration of the roads are very complex in nature and vary from place to place. Hence there is need to have a thorough study of the deterioration mechanism under varied climatic zones and soil conditions before arriving at a definite strategy of road improvement. Realizing the need for a detailed study involving all types of roads in the state with varying traffic and soil conditions, the present study has been attempted. This study attempts to identify the parameters that affect the performance of roads and to develop performance models suitable to Kerala conditions. A critical review of the various factors that contribute to the pavement performance has been presented based on the data collected from selected road stretches and also from five corporations of Kerala. These roads represent the urban conditions as well as National Highways, State Highways and Major District Roads in the sub urban and rural conditions. This research work is a pursuit towards a study of the road condition of Kerala with respect to varying soil, traffic and climatic conditions, periodic performance evaluation of selected roads of representative types and development of distress prediction models for roads of Kerala. In order to achieve this aim, the study is focused into 2 parts. The first part deals with the study of the pavement condition and subgrade soil properties of urban roads distributed in 5 Corporations of Kerala; namely Thiruvananthapuram, Kollam, Kochi, Thrissur and Kozhikode. From selected 44 roads, 68 homogeneous sections were studied. The data collected on the functional and structural condition of the surface include pavement distress in terms of cracks, potholes, rutting, raveling and pothole patching. The structural strength of the pavement was measured as rebound deflection using Benkelman Beam deflection studies. In order to collect the details of the pavement layers and find out the subgrade soil properties, trial pits were dug and the in-situ field density was found using the Sand Replacement Method. Laboratory investigations were carried out to find out the subgrade soil properties, soil classification, Atterberg limits, Optimum Moisture Content, Field Moisture Content and 4 days soaked CBR. The relative compaction in the field was also determined. The traffic details were also collected by conducting traffic volume count survey and axle load survey. From the data thus collected, the strength of the pavement was calculated which is a function of the layer coefficient and thickness and is represented as Structural Number (SN). This was further related to the CBR value of the soil and the Modified Structural Number (MSN) was found out. The condition of the pavement was represented in terms of the Pavement Condition Index (PCI) which is a function of the distress of the surface at the time of the investigation and calculated in the present study using deduct value method developed by U S Army Corps of Engineers. The influence of subgrade soil type and pavement condition on the relationship between MSN and rebound deflection was studied using appropriate plots for predominant types of soil and for classified value of Pavement Condition Index. The relationship will be helpful for practicing engineers to design the overlay thickness required for the pavement, without conducting the BBD test. Regression analysis using SPSS was done with various trials to find out the best fit relationship between the rebound deflection and CBR, and other soil properties for Gravel, Sand, Silt & Clay fractions. The second part of the study deals with periodic performance evaluation of selected road stretches representing National Highway (NH), State Highway (SH) and Major District Road (MDR), located in different geographical conditions and with varying traffic. 8 road sections divided into 15 homogeneous sections were selected for the study and 6 sets of continuous periodic data were collected. The periodic data collected include the functional and structural condition in terms of distress (pothole, pothole patch, cracks, rutting and raveling), skid resistance using a portable skid resistance pendulum, surface unevenness using Bump Integrator, texture depth using sand patch method and rebound deflection using Benkelman Beam. Baseline data of the study stretches were collected as one time data. Pavement history was obtained as secondary data. Pavement drainage characteristics were collected in terms of camber or cross slope using camber board (slope meter) for the carriage way and shoulders, availability of longitudinal side drain, presence of valley, terrain condition, soil moisture content, water table data, High Flood Level, rainfall data, land use and cross slope of the adjoining land. These data were used for finding out the drainage condition of the study stretches. Traffic studies were conducted, including classified volume count and axle load studies. From the field data thus collected, the progression of each parameter was plotted for all the study roads; and validated for their accuracy. Structural Number (SN) and Modified Structural Number (MSN) were calculated for the study stretches. Progression of the deflection, distress, unevenness, skid resistance and macro texture of the study roads were evaluated. Since the deterioration of the pavement is a complex phenomena contributed by all the above factors, pavement deterioration models were developed as non linear regression models, using SPSS with the periodic data collected for all the above road stretches. General models were developed for cracking progression, raveling progression, pothole progression and roughness progression using SPSS. A model for construction quality was also developed. Calibration of HDM–4 pavement deterioration models for local conditions was done using the data for Cracking, Raveling, Pothole and Roughness. Validation was done using the data collected in 2013. The application of HDM-4 to compare different maintenance and rehabilitation options were studied considering the deterioration parameters like cracking, pothole and raveling. The alternatives considered for analysis were base alternative with crack sealing and patching, overlay with 40 mm BC using ordinary bitumen, overlay with 40 mm BC using Natural Rubber Modified Bitumen and an overlay of Ultra Thin White Topping. Economic analysis of these options was done considering the Life Cycle Cost (LCC). The average speed that can be obtained by applying these options were also compared. The results were in favour of Ultra Thin White Topping over flexible pavements. Hence, Design Charts were also plotted for estimation of maximum wheel load stresses for different slab thickness under different soil conditions. The design charts showed the maximum stress for a particular slab thickness and different soil conditions incorporating different k values. These charts can be handy for a design engineer. Fuzzy rule based models developed for site specific conditions were compared with regression models developed using SPSS. The Riding Comfort Index (RCI) was calculated and correlated with unevenness to develop a relationship. Relationships were developed between Skid Number and Macro Texture of the pavement. The effort made through this research work will be helpful to highway engineers in understanding the behaviour of flexible pavements in Kerala conditions and for arriving at suitable maintenance and rehabilitation strategies. Key Words: Flexible Pavements – Performance Evaluation – Urban Roads – NH – SH and other roads – Performance Models – Deflection – Riding Comfort Index – Skid Resistance – Texture Depth – Unevenness – Ultra Thin White Topping
Resumo:
The foraminiferal-rich pelagic Bateig Limestone forms several varieties of the important building stones quarried at Bateig Hill in southeastern Spain. Three principal ichnofabrics (Bichordites, mottled-Palaeophycus and mottled-Ophiomorpha) are recognized, which are present in at least two (possibly up to four) repeated successions (cycles). Each succession begins with an erosional event. The Bichordites ichnofabric represents a new type of facies, formed as thin turbidity/grain flow, stratiform units derived from sediment slips off a fault into deep water. Each slipped unit became almost completely bioturbated by infaunal echinoids, colonizing by lateral migration. Because of the thinness of the units, successive colonizations tended to truncate the underlying burrows giving rise to a pseudo-stratification. As the Bichordites ichnofabric accumulated on the fault apron, thus reducing the effective height of the fault scarp, the substrate gradually came under the influence of currents traversing the shelf. This led to a change in hydraulic regime, and to the mottled-Palaeophycus and mottled-Ophiomorpha ichnofabrics in sediment deposited under bed load transport, and associated with laminar and cross-stratified beds and local muddy intervals. Reactivation of the fault triggered erosion and channeling and a return to grain flow sedimentation, and to the Bichordites ichnofabric of the succeeding cycle. The highest unit of the Bateig Limestone is formed entirely of cross-stratified calcarenites with occasional Ophiomorpha (Ophiomorpha-primary lamination ichnofabric) and is similar to many shallow marine facies but they still bear a significant content of pelagic foraminifera. The sedimentary setting bears resemblance with that described for the Pleistocene Monte Torre Paleostrait and the modem Strait of Messina (Italy), where the narrow morphology of the depositional area enhanced tidal currents and allowed for high-energy sandy deposition in relatively deep areas. More data on the Miocene paleogeography of the Bateig area should provide further testing for this hypothesis. The ichnofacies and stacking of the Bateig Limestone differ from the classic Seilacherian model in that they reflect changes in hydraulic process and are associated with faulting and subsidence and changes in sediment supply. Recognition of the unusual ichnofabrics and their relationships provides a clear indication of the overall dynamic setting. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Intraplate earthquakes in stable continental areas have been explained basically by reactivation of pre-existing zones of weakness, stress concentration, or both. Zones of weakness are usually identified as sites of the last major orogeny, provinces of recent alkaline intrusions, or stretched crust in ancient rifts. However, it is difficult to identify specific zones of weakness and intraplate fault zones are not always easily correlated with known geological features. Although Northeastern Brazil is one of the most seismically active areas in the country (magnitudes 5 roughly every 5 yr), with hypocentral depths shallower than similar to 10 km and seismic zones as long as 30-40 km, no clear relationship with the known surface geology can be usually established with confidence, and a clear identification of zones of weakness has not yet been possible. Here we present the first clear case of seismic activity occurring as reactivation of an old structure in Brazil: the Pernambuco Lineament, a major Neoproterozoic shear zone. The 2004 earthquake swarm of Belo Jardim (magnitudes up to 3.1) and the recurrent activities in the nearby towns of Sao Caetano and Caruaru (magnitudes up to 4.0 and 3.8), show that the Pernambuco Lineament is a weak zone. A local seismic network showed that the Belo Jardim swarm of 2004 November occurred by normal faulting on a North dipping, E-W oriented fault plane in close agreement with the E-W trending structures within the Pernambuco Lineament. The Belo Jardim activity was concentrated in a 1.5 km (E-W) by 2 km (downdip) fault area, and average depth of 4.5 km. The nearby Caruaru activity occurs as both strike-slip and normal faulting, also consistent with local structures of the Pernambuco Lineament. The focal mechanisms of Belo Jardim, Caruaru and S. Caetano, indicate E-W compressional and N-S extensional principal stresses. The NS extension of this stress field is larger than that predicted by numerical models such as those of Coblentz & Richardson and we propose that additional factors such as flexural stresses from the nearby Sergipe-Alagoas marginal basin could also affect the current stress field in the Pernambuco Lineament.
Resumo:
On December 9, 2007, a 4.9 m(b) earthquake occurred in the middle of the Sao Francisco Craton, in a region with no known previous activity larger than 4 m(b). This event reached intensity VII MM (Modified Mercalli) causing the first fatal victim in Brazil. The activity had started in May 25, 2007 with a 3.5 magnitude event and continued for several months, motivating the deployment of a local 6-station network. A three week seismic quiescence was observed before the mainshock. Initial absolute hypocenters were calculated with best fitting velocity models and then relative locations were determined with hypoDD. The aftershock distribution indicates a 3 km long rupture for the mainshock. The fault plane solution, based on P-wave polarities and hypocentral trend, indicates a reverse faulting mechanism on a N30 degrees E striking plane dipping about 40 degrees to the SE. The rupture depth extends from about 0.3 to 1.2 km only. Despite the shallow depth of the mainshock, no surface feature could be correlated with the fault plane. Aeromagnetic data in the epicentral area show short-wavelength lineaments trending NNE-SSW to NE-SW which we interpret as faults and fractures in the craton basement beneath the surface limestone layer. We propose that the Caraibas-Itacarambi seismicity is probably associated with reactivation of these basement fractures and faults under the present E-W compressional stress field in this region of the South American Plate. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Important concentrations of tourmaline occur as gold-bearing stratiform tourmalinites and in mineralized quartz-tourmaline veins at the Tapera Grande and Quartzito gold prospects in the Mesoproterozoic Serra do Itaberaba Group, central Ribeira Belt (Sao Paulo State, SE Brazil). The main rock types in both prospects constitute the volcanic-sedimentary Morro da Pedra Preta Formation, which formed in a submarine back-arc setting. At Tapera Grande, the volcanic-sedimentary sequence is composed of metabasic and metavolcaniclastic rocks, graphitic and sulfur-rich metapelites, banded iron formation, metandesite, metarhyolite, calcsilicates, tourmalinites and metahydrothermalites derived from mafic and felsic rocks. The Mesoproterozoic rocks at Quartzito prospect are lithologically similar but they have been affected by Neoproterozoic faulting and shearing and by the emplacement of granitic rocks, resulting in the formation of tourmaline-rich quartz-carbonate veins with gold and base metal mineralization. We conducted a chemical and B-isotope study of tourmalines in order to better understand the origin of the stratiform tourmalinites in the Morro da Pedra Preta Formation and their relationship with gold mineralization. The overall range of delta(11)B values obtained for the tourmalinite and vein tourmalines is between - 15%. and -5 parts per thousand, with the tourmalinites failing at the low end of this range (-15 to -8 parts per thousand). Such values are typical for continental crust and inconsistent with a primary marine boron signature as expected from the submarine-exhalative model for the gold prospects. We conclude from this that tourmaline formed or recrystallized from crustal fluids related to the amphibolite-grade metamorphism which affected the Serra do Itaberaba Group and that gold deposition occurred syn- to post-peak metamorphism by phase immiscibility, as attested by fluid inclusions in Tapera Grande tourmalinite tourmaline and quartz. The vein-hosted tourmalines at Quartzito have isotopically variable boron signatures, with heavier delta(11)B values of -5 parts per thousand to -8 parts per thousand for acicular green tourmalines and lighter values (-15 parts per thousand to -7 parts per thousand for light blue, Ti-firee tourmaline from quartz-carbonate veins). We attribute the heavier boron to fluids derived from the volcano-sedimentary rocks of marine affinity whereas the lighter boron was contributed by crustal fluids related to the granitoids or metasediments in the continental crust. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
This thesis encompasses the integration of geological, geophysical, and seismological data in the east part of the Potiguar basin, northeastern Brazil. The northeastern region is located in South American passive margin, which exhibits important areas that present neotectonic activity. The definition of the chronology of events, geometry of structures generated by these events, and definition of which structures have been reactivated is a necessary task in the region. The aims of this thesis are the following: (1) to identify the geometry and kinematics of neotectonic faults in the east part of the Potiguar basin; (2) to date the tectonic events related to these structures and related them to paleoseismicity in the region; (3) to present evolutional models that could explain evolution of Neogene structures; (4) and to investigate the origin of the reactivation process, mainly the type of related structure associated with faulting. The main type of data used comprised structural field data, well and resistivity data, remote sensing imagery, chronology of sediments, morphotectonic analysis, x-ray analysis, seismological and aeromagnetic data. Paleostress analysis indicates that at least two tectonic stress fields occurred in the study area: NSoriented compression and EW-oriented extension from the late Campanian to the early Miocene and EW-oriented compression and NS-oriented extension from the early Miocene to the Holocene. These stress fields reactivated NE-SW- and NW-SE-trending faults. Both set of faults exhibit right-lateral strike-slip kinematics, associated with a minor normal component. It was possible to determine the en echelon geometry of the Samambaia fault, which is ~63 km long, 13 km deep, presents NE-SW trend and strong dip to NW. Sedimentfilled faults in granite rocks yielded Optically Stimulated Luminescence (OSL) and Single-Aliquot Regeneration (SAR) ages at 8.000 - 9.000, 11.000 - 15.000, 16.000 - 24.000, 37.000 - 45.500, 53.609 - 67.959 e 83.000 - 84.000 yr BP. The analysis of the ductile fabric in the João Câmara area indicate that the regional foliation is NE-SW-oriented (032o - 042o), which coincides with the orientation of the epicenters and Si-rich veins. The collective evidence points to reactivation of preexisting structures. Paleoseismological data suggest paleoseismic activity much higher than the one indicated by the short historical and instrumental record
Resumo:
This MSc dissertation presents the results of a research carried out in a 500 km2 area in the Nísia Floresta county. The main goal of the research was to evaluate fault influence on hidrology features of aquifers and lakes, mainly in the Barreiras Group and in the Bonfim lake cluster respectively. The Precambrian crystalline basement is made of Caicó Complex rocks. They are capped by cretaceous sedimentary rocks and by cenozoic sedimentary rocks. Only the latter outcrop in the study area, wheareas the former are described in boreholes. Faults cut across all stratigraphic units and their main trends are NW, NE and E-W, which have been generated by E-W compression. Subordinate N-S trending faults also take place and have been generated by N-S oriented compression. Fault controlled hydrologic features are observed throughout the study area. There are sudden changes in saturated thicknesses of the Barreiras Aquifer due to vertical displacement of the Barreiras Group. The most important underground water source of the Bonfim Lake is related to abrupt thickness changes of the aquifer. In addition, the main faults control the underground drainage network and, probably, change in direction of equipotential surfaces seen on the potenciometric map. Regarding the surface hydrologic features, faults also control river and stream channels, as well as lake origin and shapes. The Bonfim Lake, in particular, has its peculiar shape, which follows NW and NE lineaments, and origin related to faulting and probably underground carstics processes
Resumo:
This study describes brittle deformation and seismicity in the Castanhão Dam region, Ceará State, Brazil. This reservoir will include a hidroeletric power plant and will store about 6,7 billions m3 of water. Five main litostratigraphic unit were identified in the region: gneissic-migmatitic basement, metavolcanosedimentary sequence, granitoid plutons of Brasiliano age, Mesozoic basaltic dike swarm, and Cenozoic fluvial terraces of the Jaguaribe river. The region has experienced several faulting events that occurred at different crustal levels. Faults formed at depths less than about 12 km present left-lateral movement and are associated with epidote and quartz infillings. Faults formed at depths less than 7 km are mainly strike-slip present cataclastic rocks, fault breccia and gouge. Both fault groups form mainly NE-trendind lineaments and represent reactivation of ductile shear zones or new formed faults that cut across existing structures. Seismically-induced liquefaction fractures take place in Cenozoic terraces and indicate paleoearthquakes that may have reached at leat 6,8 MS. In short, this work indicate that the level of paleoseismicity is much greater than one observed in the instrumental record. Several faults are favourably oriented for reactivation and induced seismicity should be expected after the Castanhão Dam impoudment
Correlação entre contexto morfoestrutural e sismicidade nas regiões de João Câmara e São Rafael (RN)
Resumo:
This MSc thesis describes brittle deformation in two seismic zones located in north-eastern Brazil: João Câmara and São Rafael, Rio Grande do Norte State. Both areas show seismogenic faults, Samambaia and São Rafael, indicated by narrow zones of epicentres with a strike of 040o, a lenght of 30 km and 4 km, and a depth of 1-12 and 0,5-4 km, respectively. The first seismological and geological studies suggested blind faults or faults that were still in the beginning of the nucleation process. The region is under E-W-oriented compression and is underlain by Precambrian terrains, deformed by one or more orogenic cycles, which generated shear zones generally marked by strong pervasive foliation and sigmoidal shapes. The crystalline basement is capped by the Cretaceous Potiguar basin, which is also locally capped by Pliocene continental siliciclastic deposits (Barreiras Formation), and Quaternary alluvium. The main aim of this study was to map epicentral areas and find whether there are any surface geological or morphotectonic expression related to the seismogenic faults. A detailed geological map was carried out in both seismic areas in order to identify brittle structures and fault-related drainage/topographic features. Geological and morphotectonic evidence indicate that both seismogenic faults take place along dormant structures. They either cut Cenozoic rocks or show topographic expression, i.e., are related to topographic heights or depressions and straight river channels. Faults rocks in the Samambaia and São Rafael faults are cataclasite, fault breccia, fault gouge, pseudotachylyte, and quartz veins, which point to reactivation processes in different crustal levels. The age of the first Samambaia and the São Rafael faulting movement possibly ranges from late Precambrian to late Cretaceous. Both fault cut across Precambrian fabric. They also show evidence of brittle processes which took place between 4 and 12 km deep, which probably have not occurred in Cenozoic times. The findings are of great importance for regional seismic hazard. They indicate that fault zones are longer than previously suggested by seismogenic studies. According to the results, the methodology used during this thesis may also be useful in other neotectonic investigation in intraplate areas
Resumo:
The South Orkney Islands are the exposed part of a continental fragment on the southern limb of the Scotia are. The islands are to a large extent composed of metapelites and metagreywackes of probable Triassic sedimentary age. Deformation related to an accretionary wedge setting, with associated metamorphism from anchizone to the greenschist facies, are of Jurassic age (176-200 Ma). on Powell Island, in the centre of the archipelago, five phases of deformation are recognized. The first three, associated with the main metamorphism, are tentatively correlated with early Jurassic subduction along the Pacific margin of Gondwana. D-4 is a phase of middle to late Jurassic crustal extension associated with uplift. This extension phase may be related to opening of the Rocas Verdes basin in southern Chile, associated with the breakup of Gondwanaland. Upper Jurassic conglomerates cover the metamorphic rocks unconformably. D-5 is a phase of brittle extensional faulting probably associated with Cenozoic opening of the Powell basin west of the archipelago, and with development of the Scotia are.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The possible development of thermal events in the central portion of São Paulo state was described based on apatite fission track analysis. Using apatites of sedimentary rocks of the Paraná Basin, modeling the thermal history was made possible due to the homogeneity of the data. Every thermal history begins with a total annealing of fission tracks, related to the Serra Geral magmatism, evolving into a cooling period. In addition to cooling after the magmatism (Early Cretaceous) two other periods of cooling were also detected, registered in the Late Cretaceous/ Paleocene and Eocene, driven as much by uplift with tectonic denudation as by faulting. The nearest portion of the edge of the basin (external to the Dome of Pitanga), registered a period of warming over the Paleocene that can be attributed to the increase in the geothermal gradient. The periods of cooling have a regional and temporal relationship with the tectonic events that occurred in the southeastern Brazil and were described in the crystalline basement. The period of warming, registered in the Late Cretaceous/ Paleocene, has local occurrence and can be found only in the southern portion of the studied area.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geologia Regional - IGCE