924 resultados para facility


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two different type scramjet models with side-wall compression and top-wall compression inlets have been tested in HPTF (Hypersonic Propulsion Test Facility) under the experimental conditions of Mach number 5.8, total temperature 1700K, total pressure 4.5MPa and mass flow rate 3.5kg/s. The liquid kerosene was used as main fuel for the scramjets. In order to get fast ignition in the combustor, a small amount of hydrogen was used as a pilot. A strut with alternative tail was employed for increasing the compression ratio and for mixing enhancement in the side-wall compression case. Recessed cavities were used as a flameholder for combustion stability. The combustion efficiency was estimated by one dimensional theory. The uniformity of the facility nozzle flow was verified by a scanning pitot rake. The experimental results showed that the kerosene fuel was successfully ignited and stable combustion was achieved for both scramjet models. However the thrusts were still less than the model drags due to the low combustion efficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental research on a 150 kW arc-heated plasma testing facility was conducted. Stable plasma jets with different gas compositions, temperatures and velocities were obtained at chamber pressure between 400 Pa – 100 kPa. Stagnation ablation experiments were conducted on samples of typical super alloys used for thermal protection systems. The microstructure and hardness of alloys before and after ablation were compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time to our knowledge, in a high-energy laser facility with an output energy of 454.37 J, by using a temporal-space-transforming pulse-shaping system with our own design of a knife-edge apparatus, we obtained a quasi-square laser pulse. (c) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient test facilities offer the potential for the simultaneous study of turbine aerodynamic performance, unsteady flow phenomena and the heat transfer characteristics of a turbine stage. This paper describes the development of aerodynamic performance measurement techniques in the Oxford Rotor Facility (ORF). The solutions to the technological issues involved with transient testing presented in this paper are expected to achieve levels of precision uncertainty comparable with traditional steady flow test rigs. The theoretical background to the measurement of aerodynamic performance is presented together with a comprehensive pre-test uncertainty analysis. The instrumentation scheme for the measurement of stage mass flow rate is discussed in detail, the measurements of shaft power, total inlet enthalpy, and stage pressure ratio are also outlined. The current working section features a 62% scale, 1-1/2 stage, high-pressure shroudless transonic turbine. The required inlet flow conditions are provided by an Isentropic Light Piston Tunnel (ILPT) with a quasi-steady state run time of approximately 70ms. The testing is conducted at engine representative specific speed, pressure ratio, gas-to-wall temperature ratio, Mach number and Reynolds number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the design considerations for a proposed aerodynamic characterization facility (ACF) for micro aerial vehicles (MAVs). This is a collaborative effort between the Air Force Research Laboratory Munitions Directorate (AFRL/MN) and the University of Florida Research and Engineering Education Facility (UF/REEF). The ACF is expected to provide a capability for the characterization of the aerodynamic performance of future MAVs. This includes the ability to gather the data necessary to devise control strategies as well as the potential to investigate aerodynamic 'problem areas' or specific failings. Since it is likely that future MAVs will incorporate advanced control strategies, the facility must enable researchers to critically assess such novel methods. Furthermore, the aerodynamic issues should not be seen (and tested) in isolation, but rather the facility should be able to also provide information on structural responses (such as aeroelasticity) as well as integration issues (say, thrust integration or sensor integration). Therefore the mission for the proposed facility ranges form fairly basic investigations of individual technical issues encountered by MAVs (for example an evaluation of wing shapes or control effectiveness) all the way to testing a fully integrated vehicle in a flight configuration for performance evaluation throughout the mission envelope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimisation of cooling systems within gas turbine engines is of great interest to engine manufacturers seeking gains in performance, efficiency and component life. The effectiveness of coolant delivery is governed by complex flows within the stator wells and the interaction of main annulus and cooling air in the vicinity of the rim seals. This paper reports the development of a test facility which allows the interaction of cooling air and main gas paths to be measured at conditions representative of those found in modern gas turbine engines. The test facility features a two stage turbine with an overall pressure ratio of approximately 2.6:1. Hot air is supplied to the main annulus using a Rolls-Royce Dart compressor driven by an aero-derivative engine plant. Cooling air can be delivered to the stator wells at multiple locations and at a range of flow rates which cover bulk ingestion through to bulk egress. The facility has been designed with adaptable geometry to enable rapid changes of cooling air path configuration. The coolant delivery system allows swift and accurate changes to the flow settings such that thermal transients may be performed. Particular attention has been focused on obtaining high accuracy data, using a radio telemetry system, as well as thorough through-calibration practices. Temperature measurements can now be made on both rotating and stationary discs with a long term uncertainty in the region of 0.3 K. A gas concentration measurement system has also been developed to obtain direct measurement of re-ingestion and rim seal exchange flows. High resolution displacement sensors have been installed in order to measure hot running geometry. This paper documents the commissioning of a test facility which is unique in terms of rapid configuration changes, non-dimensional engine matching and the instrumentation density and resolution. Example data for each of the measurement systems is presented. This includes the effect of coolant flow rate on the metal temperatures within the upstream cavity of the turbine stator well, the axial displacement of the rotor assembly during a commissioning test, and the effect of coolant flow rate on mixing in the downstream cavity of the stator well. Copyright © 2010 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing pressure on material availability, energy prices, as well as emerging environmental legislation is leading manufacturers to adopt solutions to reduce their material and energy consumption as well as their carbon footprint, thereby becoming more sustainable. Ultimately manufacturers could potentially become zero carbon by having zero net energy demand and zero waste across the supply chain. The literature on zero carbon manufacturing and the technologies that underpin it are growing, but there is little available on how a manufacturer undertakes the transition. Additionally, the work in this area is fragmented and clustered around technologies rather than around processes that link the technologies together. There is a need to better understand material, energy, and waste process flows in a manufacturing facility from a holistic viewpoint. With knowledge of the potential flows, design methodologies can be developed to enable zero carbon manufacturing facility creation. This paper explores the challenges faced when attempting to design a zero carbon manufacturing facility. A broad scope is adopted from legislation to technology and from low waste to consuming waste. A generic material, energy, and waste flow model is developed and presented to show the material, energy, and waste inputs and outputs for the manufacturing system and the supporting facility and, importantly, how they can potentially interact. Finally the application of the flow model in industrial applications is demonstrated to select appropriate technologies and configure them in an integrated way. © 2009 IMechE.