942 resultados para experimental analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat-transfer studies were carried out in a packed bed of glass beads, cooled by the wall, through which air percolated. Tube-to-particle diameter ratios (D/dp) ranged from 1.8 to 55, while the air mass flux ranged from 0.204 to 2.422 kg/m2·s. The outlet bed temperature (TL) was measured by a brass ring-shaped sensor and by aligned thermocouples. The resulting radial temperature profiles differed statistically. Angular temperature fluctuations were observed through measurements made at 72 angular positions. These fluctuations do not follow a normal distribution around the mean for low ratios D/dp. The presence of a restraining screen, as well as the increasing distance between the temperature measuring device and the bed surface, distorts TL. The radial temperature profile at the bed entrance (T0) was measured by a ring-shaped sensor, and T 0 showed to be a function of the radial position, the particle diameter, and the fluid flow rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work present a study of glulam beams reinforced with FRP. It was developed a theoretical model that calculates strength and stiffness of the beams. The model allows for the calculation of the bending moment, the hypothetical distribution of linear strains along the height of the beam, and considers the wood has a linear elastic fragile behavior in tension parallel to the fibers and bilinear in compression parallel to the fibers, initially elastic and subsequently inelastic, with a negative decline in the stress-strain diagram. The stiffness was calculated by the transformed section method. Twelve non-reinforced and fiberglass reinforced glulam beams were evaluated experimentally to validate the proposed theoretical model. The results obtained indicate good congruence between the experimental and theoretical values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel members are subject to failure caused by buckling, normally under loads smaller than those corresponding to partial or total yielding of the cross section. The buckling of members in bending can be classified as local or global, and the occurrence of one or the other type is expected by the members' geometric characteristics and by the constraints and load conditions. One of the local instability modes that can characterize a member's failure is distortional buckling of the cross section occurring on its own plane and involving lateral displacements and rotations. This paper presents and discusses the procedures and results obtained from experimental tests of cold-formed steel members under bending. Forty-eight beams were carried out on members in simple lipped channel, in pairs, with 6-meter spans and loads applied by concentrated forces at every 1/3 of the span. The thickness, width and dimensions, of the stiffeners were chosen so that the instability by distortion buckling of the cross section was the principal failure mode expected. The experimental results are compared with the obtained results by using the direct strength method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural health monitoring (SHM) systems based on electromechanical (E/M) impedance technique have been widely investigated. Although many studies indicate the reliability of this technique, some practical considerations still have to be considered in real applications. This paper presents an experimental analysis of the effect of the structure area on the system's performance. The results indicate that the sensitivity of the system to detect damage decreases significantly when the host structure has large cross-section area. Copyright © 2009 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reveals new contributions to the analysis and development of mitigating harmonic distortion devices. Considering the variety of sequential distribution of harmonic current, in the use of passive filters, one can point out the electromagnetic blocking device, which have received particular attention due to its robustness and low cost of installation. In this context, aiming the evaluation of the reliability of the results obtained through mathematical modeling, experimental tests are carried out using a low-power prototype, highlighting particular aspects related to its function as a zero-sequence harmonic blocking. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intent of this paper is to present contributions focused on the analysis and development of harmonic attenuator devices. Among these, highlights here the so-called electromagnetic zero-sequence suppressor. This arrangement consists of a filter and a blocker, both electromagnetic, whose combined operation provides paths for low and high impedance, respectively, which can be conveniently adjusted to the desired performance. In this context, here are present results related to experimental studies that show the behavior of the equipment in front of different operating conditions. The tests were performed on a low-power prototype (1kVA/220V) and the analysis results show the main motivator aspects for the use of these devices. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An excitation force that is not influenced by the system state is said to be an ideal energy source. In real situations, a direct and feedback coupling between the excitation source and the system must always exist at a certain level. This manifestation of the law of conservation of energy is known as the Sommerfeld effect. In the case of obtaining a mathematical model for such a system, additional equations are usually necessary to describe the vibration sources with limited power and its coupling with the mechanical system. In this work, a cantilever beam and a non-ideal DC motor fixed to its free end are analyzed. The motor has an unbalanced mass that provides excitation to the system which is proportional to the current applied to the motor. During the coast up operation of the motor, if the drive power is increased slowly, making the excitation frequency pass through the first natural frequency of the beam, the DC motor speed will remain the same until it suddenly jumps to a much higher value (simultaneously its amplitude jumps to a much lower value) upon exceeding a critical input power. It was found that the Sommerfeld effect depends on some system parameters and the motor operational procedures. These parameters are explored to avoid the resonance capture in the Sommerfeld effect. Numerical simulations and experimental tests are used to help gather insight of this dynamic behavior. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Masonry spandrels together with shear walls are structural components of a masonry building subjected to lateral loads. Shear walls are the main components of this structural system, even if masonry spandrels are the elements that ensure the connection of shear wall panels and the distribution of stresses through the masonry piers. The use of prefabricated truss type bars in the transversal and longitudinal directions is usually considered a challenge, even if the simplicity of the applications suggested here alleviate some of the possible difficulties. This paper focus on the experimental behavior of masonry spandrels reinforced with prefabricated trusses, considering different possibilities for the arrangement of reinforcement and blocks. Reinforced spandrels with three and two hollow cell concrete blocks and with different reinforcement ratios have been built and tested using a four and three point loading test configuration. Horizontal bed joint reinforcement increased the capacity of deformation as well as the ultimate load, leading to ductile responses. Vertical reinforcement increased the shear strength of the masonry spandrels and its distribution play a central role on the shear behavior. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing use of Fiber Reinforced methods for strengthening existing brick masonry walls and columns, especially for the rehabilitation of historical buildings, has generated considerable research interest in understanding the failure mechanism in such systems. This dissertation is aimed to provide a basic understanding of the behavior of solid brick masonry walls unwrapped and wrapped with Fiber Reinforced Cementitious Matrix Composites. This is a new type of composite material, commonly known as FRCM, featuring a cementitious inorganic matrix (binder) instead of the more common epoxy one. The influence of the FRCM-reinforcement on the load-carrying capacity and strain distribution during compression test will be investigated using a full-field optical technique known as Digital Image Correlation. Compression test were carried on 6 clay bricks columns and on 7 clay brick walls in three different configuration, casted using bricks scaled respect the first one with a ratio 1:2, in order to determinate the effects of FRCM reinforcement. The goal of the experimental program is to understand how the behavior of brick masonry will be improved by the FRCM-wrapping. The results indicate that there is an arching action zone represented in the form of a parabola with a varying shape according to the used configuration. The area under the parabolas is considered as ineffectively confined. The effectively confined area is assumed to occur within the region where the arching action had been fully developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The velocity and mixing field of two turbulent jets configurations have been experimentally characterized by means of cold- and hot-wire anemometry in order to investigate the effects of the initial conditions on the flow development. In particular, experiments have been focused on the effect of the separation wall between the two streams on the flow field. The results of the experiments have pointed out that the wake behind a thick wall separating wall has a strong influence on the flow field evolution. For instance, for nearly unitary velocity ratios, a clear vortex shedding from the wall is observable. This phenomenon enhances the mixing between the inner and outer shear layer. This enhancement in the fluctuating activity is a consequence of a local absolute instability of the flow which, for a small range of velocity ratios, behaves as an hydrodynamic oscillator with no sensibility to external perturbations. It has been suggested indeed that this absolute instability can be used as a passive method to control the flow evolution. Finally, acoustic excitation has been applied to the near field in order to verify whether or not the observed vortex shedding behind the separating wall is due to a global oscillating mode as predicted by the theory. A new scaling relationship has been also proposed to determine the preferred frequency for nearly unitary velocity ratios. The proposed law takes into account both the Reynolds number and the velocity ratio dependence of this frequency and, therefore, improves all the previously proposed relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis effects of plasma actuators based on Dielectric Barrier Discharge (DBD) technology over a NACA 0015 bidimensional airfoil have been analyzed in an experimental way, at low Reynolds number. Work developed on thesis has been carried on in partnership with the Department of Electrical Engineering of Università di Bologna, inside Wind Tunnel of the Applied Aerodynamic Laboratory of Aerospace Engineering faculty. In order to verify the effectiveness of these active control devices, the analysis has shown how actuators succeed in prevent boundary layer separation only in certain conditions af angle of attack and Reynolds numbers. Moreover, in this thesis actuators’ chordwise position effect has been also analyzed, together with the influence of steady and unsteady operations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extrusion is a process used to form long products of constant cross section, from simple billets, with a high variety of shapes. Aluminum alloys are the materials most processed in the extrusion industry due to their deformability and the wide field of applications that range from buildings to aerospace and from design to automotive industries. The diverse applications imply different requirements that can be fulfilled by the wide range of alloys and treatments, that is from critical structural application to high quality surface and aesthetical aspect. Whether one or the other is the critical aspect, they both depend directly from microstructure. The extrusion process is moreover marked by high deformations and complex strain gradients making difficult the control of microstructure evolution that is at present not yet fully achieved. Nevertheless the evolution of Finite Element modeling has reached a maturity and can therefore start to be used as a tool for investigation and prediction of microstructure evolution. This thesis will analyze and model the evolution of microstructure throughout the entire extrusion process for 6XXX series aluminum alloys. Core phase of the work was the development of specific tests to investigate the microstructure evolution and validate the model implemented in a commercial FE code. Along with it two essential activities were carried out for a correct calibration of the model beyond the simple research of contour parameters, thus leading to the understanding and control of both code and process. In this direction activities were also conducted on building critical knowhow on the interpretation of microstructure and extrusion phenomena. It is believed, in fact, that the sole analysis of the microstructure evolution regardless of its relevance in the technological aspects of the process would be of little use for the industry as well as ineffective for the interpretation of the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis provides an experimental analysis of the effectiveness of oriented DBD plasma actuators over a NACA 0015 airfoil at low Reynolds numbers. Tests were performed in partnership with the Department of Electrical Engineering of Bologna University, in the wind tunnel of the Applied Aerodynamics Laboratory of Aerospace Engineering faculty. Lift coefficient measurements were carried out in order to verify how an oriented plasma jet succeeds in prevent boundary layer separation. Both actuators’ chord wise position and plasma jet orientation angle have been investigated to examine which configurations lead to the best results. A particular attention has been paid also to the analysis of results in steady and unsteady plasma actuation. Questa tesi offre un’analisi sperimentale sull’efficacia di attuatori al plasma orientabili, basati su una tecnologia DBD, installati su un profilo alare NACA 0015, a bassi numeri di Reynolds. Le prove sono state condotte in collaborazione con il Dipartimento di Ingegneria Elettrica dell’Università di Bologna, nella galleria del vento del Laboratorio di Aerodinamica Applicata della Facoltà di Ingegneria Aerospaziale di Forlì. Per verificare come un getto orientabile di plasma riesca a prevenire la separazione dello strato limite, sono state eseguite misure sul coefficiente di portanza. Sono state indagate sia la posizione degli attuatori lungo la corda che l’angolo con cui è orientato il getto di plasma, per vedere quali configurazioni conducono ai migliori risultati. Una particolare attenzione è stata riservata all’analisi dei risultati ottenuti con plasma continuo e pulsato.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compaction is one of the most important processes in roadway construction. It is needed to achieve high quality and uniformity of pavement materials, which in turn better ensure long lasting performance.