930 resultados para exchange protein directly activated by cAMP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss of response on repetitive drug exposure (i.e., tachyphylaxis) is a particular problem for the vasoconstrictor effects of medications containing oxymetazoline (OXY), an α1-adrenoceptor (AR) agonist of the imidazoline class. One cause of tachyphylaxis is receptor desensitization, usually accompanied by phosphorylation and internalization. It is well established that a1A-ARs are less phosphorylated, desensitized, and internalized on exposure to the phenethylamines norepinephrine (NE), epinephrine, or phenylephrine (PE) than are the a1B and a1D subtypes. However, here we show in human embryonic kidney-293 cells that the low-efficacy agonist OXY induces G protein-coupled receptor kinase 2-dependent a1A-AR phosphorylation, followed by rapid desensitization and internalization (∼40% internalization after 5 minutes of stimulation), whereas phosphorylation of α1A-ARs exposed to NE depends to a large extent on protein kinase C activity and is not followed by desensitization, and the receptors undergo delayed internalization (∼35% after 60 minutes of stimulation). Native α1A-ARs from rat tail artery and vas deferens are also desensitized by OXY, but not by NE or PE, indicating that thisproperty of OXY is not limited to recombinant receptors expressed in cell systems. The results of the present study are clearly indicative of agonist-directed a1A-AR regulation. OXY shows functional selectivity relative to NE and PE at a1A-ARs, leading to significant receptor desensitization and internalization, which is important in view of the therapeutic vasoconstrictor effects of this drug and the varied biologic process regulated by α1A-ARs. Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have indicated that AMP-activated protein kinase (AMPK) plays a critical role in the control of cardiac hypertrophy mediated by different stimuli such as thyroid hormone (TH). Although the classical effects of TH mediating cardiac hypertrophy occur by transcriptional mechanisms, recent studies have identified other responses to TH, which are more rapid and take place in seconds or minutes evidencing that TH rapidly modulates distinct signaling pathway, which might contribute to the regulation of cardiomyocyte growth. Here, we evaluated the rapid effects of TH on AMPK signaling pathway in cultured cardiomyocytes and determined the involvement of AMPK in T3-induced cardiomyocyte growth. We found for the first time that T3 rapidly activated AMPK signaling pathway. The use of small interfering RNA against AMPK resulted in increased cardiomyocyte hypertrophy while the pharmacological stimulation of AMPK attenuated this process, demonstrating that AMPK contributes to regulation of T3-induced cardiomyocyte growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many age-related neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and polyglutamine disorders, including Huntington’s disease, are associated with the aberrant formation of protein aggregates. These protein aggregates and/or their precursors are believed to be causally linked to the pathogenesis of such protein conformation disorders, also referred to as proteinopathies. The accumulation of protein aggregates, frequently under conditions of an age-related increase in oxidative stress, implies the failure of protein quality control and the resulting proteome instability as an upstream event of proteinopathies. As aging is a main risk factor of many proteinopathies, potential alterations of protein quality control pathways that accompany the biological aging process could be a crucial factor for the onset of these disorders.rnrnThe focus of this dissertation lies on age-related alterations of protein quality control mechanisms that are regulated by the co-chaperones of the BAG (Bcl-2-associated athanogene) family. BAG proteins are thought to promote nucleotide exchange on Hsc/Hsp70 and to couple the release of chaperone-bound substrates to distinct down-stream cellular processes. The present study demonstrates that BAG1 and BAG3 are reciprocally regulated during aging leading to an increased BAG3 to BAG1 ratio in cellular models of replicative senescence as well as in neurons of the aging rodent brain. Furthermore, BAG1 and BAG3 were identified as key regulators of protein degradation pathways. BAG1 was found to be essential for effective degradation of polyubiquitinated proteins by the ubiquitin/proteasome system, possibly by promoting Hsc/Hsp70 substrate transfer to the 26S proteasome. In contrast, BAG3 was identified to stimulate the turnover of polyubiquitinated proteins by macroautophagy, a catabolic process mediated by lysosomal hydrolases. BAG3-regulated protein degradation was found to depend on the function of the ubiquitin-receptor protein SQSTM1 which is known to sequester polyubiquitinated proteins for macroautophagic degradation. It could be further demonstrated that SQSTM1 expression is tightly coupled to BAG3 expression and that BAG3 can physically interact with SQSTM1. Moreover, immunofluorescence-based microscopic analyses revealed that BAG3 co-localizes with SQSTM1 in protein sequestration structures suggesting a direct role of BAG3 in substrate delivery to SQSTM1 for macroautophagic degradation. Consistent with these findings, the age-related switch from BAG1 to BAG3 was found to determine that aged cells use the macroautophagic system more intensely for the turnover of polyubiquitinated proteins, in particular of insoluble, aggregated quality control substrates. Finally, in vivo expression analysis of macroautophagy markers in young and old mice as well as analysis of the lysosomal enzymatic activity strongly indicated that the macroautophagy pathway is also recruited in the nervous system during the organismal aging process.rnrnTogether these findings suggest that protein turnover by macroautophagy is gaining importance during the aging process as insoluble quality control substrates are increasingly produced that cannot be degraded by the proteasomal system. For this reason, a switch from the proteasome regulator BAG1 to the macroautophagy stimulator BAG3 occurs during cell aging. Hence, it can be concluded that the BAG3-mediated recruitment of the macroauto-phagy pathway is an important adaptation of the protein quality control system to maintain protein homeostasis in the presence of an enhanced pro-oxidant and aggregation-prone milieu characteristic of aging. Future studies will explore whether an impairment of this adaptation process may contribute to age-related proteinopathies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CYP17A1 plays a pivotal role in the biosynthesis of androgens in the adrenals and the gonads. Although this enzyme catalyzes two different reactions on one single active site, its specific activities are regulated independently. Although the 17alpha-hydroxylase activity is rather constant and regulated by gene expression, the 17,20-lyase activity varies significantly with the amount of cofactors or by protein phosphorylation. cAMP increases CYP17A1 expression, P450c17 phosphorylation, and androgen production. However, the exact mechanism(s) and the specific regulators of CYP17A1 remain unknown. Therefore, we studied the regulation of adrenal androgen biosynthesis in human adrenal H295R cells focusing on CYP17A1. We analyzed androgen production and P450c17 activities in H295R cells grown under normal and serum-free conditions and/or after stimulation with 8-bromoadenosine-cAMP. H295R cells grown in starvation medium produced more androgens and had decreased HSD3B2 expression and activity but increased P450c17-17,20-lyase activity and serine phosphorylation. Although starvation increased serine phosphorylation of P450c17 specifically, cAMP stimulation enhanced threonine phosphorylation exclusively. Time-course experiments revealed that a short cAMP stimulation augmented threonine phosphorylation of P450c17 but did not increase 17,20-lyase activity. By contrast, long cAMP stimulation increased androgen production through increased P450c17 activities by enhancing CYP17A1 gene expression. We conclude that serum withdrawal shifts steroidogenesis of H295R cells towards androgen production, providing a suitable model for detailed studies of androgen regulation. In addition, our study shows that starvation and cAMP stimulation regulate P450c17 phosphorylation differentially and that an increase in P450c17 phosphorylation does not necessarily lead to enhanced enzyme activity and androgen production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ca(2+) content of the sarcoplasmic reticulum (SR) of cardiac myocytes is thought to play a role in the regulation and termination of SR Ca(2+) release through the ryanodine receptors (RyRs). Experimentally altering the amount of Ca(2+) within the SR with the membrane-permeant low affinity Ca(2+) chelator TPEN could improve our understanding of the mechanism(s) by which SR Ca(2+) content and SR Ca(2+) depletion can influence Ca(2+) release sensitivity and termination. We applied laser-scanning confocal microscopy to examine SR Ca(2+) release in freshly isolated ventricular myocytes loaded with fluo-3, while simultaneously recording membrane currents using the whole-cell patch-clamp technique. Following application of TPEN, local spontaneous Ca(2+) releases increased in frequency and developed into cell-wide Ca(2+) waves. SR Ca(2+) load after TPEN application was found to be reduced to about 60% of control. Isolated cardiac RyRs reconstituted into lipid bilayers exhibited a two-fold increase of their open probability. At the low concentration used (20-40muM), TPEN did not significantly inhibit the SR-Ca(2+)-ATPase in SR vesicles. These results indicate that TPEN, traditionally used as a low affinity Ca(2+) chelator in intracellular Ca(2+) stores, may also act directly on the RyRs inducing an increase in their open probability. This in turn results in an increased Ca(2+) leak from the SR leading to its Ca(2+) depletion. Lowering of SR Ca(2+) content may be a mechanism underlying the recently reported cardioprotective and antiarrhythmic features of TPEN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the resolution of inflammatory responses, neutrophils rapidly undergo apoptosis. We describe a new proapoptotic pathway in which cathepsin D directly activates caspase-8. Cathepsin D is released from azurophilic granules in neutrophils in a caspase-independent but reactive oxygen species-dependent manner. Under inflammatory conditions, the translocation of cathepsin D in the cytosol is blocked. Pharmacological or genetic inhibition of cathepsin D resulted in delayed caspase activation and reduced neutrophil apoptosis. Cathepsin D deficiency or lack of its translocation in the cytosol prolongs innate immune responses in experimental bacterial infection and in septic shock. Thus, we identified a new function of azurophilic granules that is in addition to their role in bacterial defense mechanisms: to regulate the life span of neutrophils and, therefore, the duration of innate immune responses through the release of cathepsin D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vitamin A metabolite retinoic acid (RA) plays a fundamental role in cellular functions by activating nuclear receptors. Retinaldehyde dehydrogenase-II (RALDH2) creates localized RA gradients needed for proper embryonic development, but very little is known regarding its regulated expression in adults. Using a human ex vivo model of allergic inflammation by coincubating IgE receptor-activated mast cells (MCs) with blood basophils, we observed prominent induction of a protein that was identified as RALDH2 by mass spectroscopy. RALDH2 was selectively induced in basophils by MC-derived interleukin-3 (IL-3) involving PI3-kinase and NF-kappaB pathways. Importantly, neither constitutive nor inducible RALDH2 expression was detectable in any other human myeloid or lymphoid leukocyte, including dendritic cells. RA generated by RALDH2 in basophils modulates IL-3-induced gene expression in an autocrine manner, providing positive (CD25) as well as negative (granzyme B) regulation. It also acts in a paracrine fashion on T-helper cells promoting the expression of CD38 and alpha4/beta7 integrins. Furthermore, RA derived from IL-3-activated basophils provides a novel mechanism of Th2 polarization. Thus, RA must be viewed as a tightly controlled basophil-derived mediator with a high potential for regulating diverse functions of immune and resident cells in allergic diseases and other Th2-type immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ser/Thr protein kinase C (PKC) isozyme family plays an important role in cell growth and differentiation and also contributes to key events in the development and progression of cancer. PKC isozymes are activated by phospholipid-dependent mechanisms, and they are also subject to oxidative activation and inactivation. Oxidative regulatory mechanisms are important in the governance of PKC isozyme action. While oxidative PKC activation involves phospho-tyrosine (P-Y) stabilization, the molecular mechanism(s) for oxidative PKC inactivation have not been defined. We previously reported that Thr → Cys peptide-substrate analogs inactivate several PKC isozymes including PKC-α via S-thiolation, i.e., by forming disulfides with PKC thiols. This inactivation mechanism is chemically analogous to protein S-glutathiolation, a post-translational modification that has been shown to oxidatively regulate several enzymes. To determine if PKC-α could be inactivated by S-glutathiolation, we employed the thiol-specific oxidant diamide (0.01–10mM) and 100μM glutathione (GSH). Diamide alone (0.1–5.0 mM) weakly inactivated PKC-α (<20%), and GSH alone had no effect on the isozyme activity. Marked potentiation of diamide-induced PKC-α inactivation (>90%) was achieved by 100μM GSH, resulting in full inactivation of the isozyme. Inactivation was reversed by DTT, consistent with a mechanism involving PKC-α S-glutathiolation. S-glutathiolation was demonstrated as DTT-reversible incorporation of [35S] GSH into PKC-α isozyme structure. These results indicate that a mild oxidative stimulus can inactivate purified PKC-α via S-glutathiolation. In addition, diamide treatment of metabolically labeled NIH3T3 cells induced potent PKC-α inactivation via isozyme [35S] S-thiolation. These results indicate that cellular PKC-α can be regulated via S-glutathiolation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulation of uterine quiescence involves the integration of the signaling pathways regulating uterine contraction and relaxation. Uterine contractants increase intracellular calcium through receptor/GαqPLC coupling, resulting in contraction of the myometrium. Elevation of cAMP concentration has been correlated with relaxation of the myometrium. However, the mechanism of cAMP action in the uterus is unclear. ^ Both endogenous and exogenous increases in cAMP inhibited oxytocin-stimulated phosphatidylinositide turnover in an immortalized pregnant human myometrial cell line (PHM1-41). This inhibition was reversed by cAMP-dependent protein kinase (PKA) inhibitors, suggesting the involvement of PKA. cAMP inhibited phosphatidyinositide turnover stimulated by different agonists in different cell lines. These data suggest that the cAMP inhibitory mechanism is neither cell nor receptor dependent, and inhibits Gαq/PLCβ1 and PLCβ3 coupling. ^ The subcellular localization of PKA occurs via PKA binding to A-Kinase-Anchoring-Proteins (AKAP), and peptides that inhibit this association have been developed (S-Ht31). S-Ht31 blocked cAMP-stimulated PKA activity and decreased PKA concentration in PHM1-41 cell plasma membranes. S-Ht31 reversed the ability of CPT-cAMP, forskolin and relaxin to inhibit phosphatidylinositide turnover in PHM1-41 cells. Overlay analysis of both PHM1-41 cell and nonpregnant rat myometrium found an AKAPs of 86 kDa and 150 kDa associated with the plasma membrane, respectively. These data suggest that PKA anchored to the plasma membrane via AKAP150/PKA anchoring is involved in the cAMP inhibitory mechanism. ^ CPT-cAMP and isoproterenol inhibited phosphatidylinositide turnover in rat myometrium from days 12 through 20 of gestation. In contrast, neither agent was effective in the 21 day pregnant rat myometrium. The decrease in the cAMP inhibitory mechanism was correlated with a decrease in PKA and an increase in protein phosphatase 2B (PP2B) concentration in rat myometrial plasma membranes on day 21 of gestation. In myometrial total cell homogenates, both PKA and PP2B concentration increased on day 21. S-Ht31 inhibited cAMP inhibition of phosphatidylinositide turnover in day 19 pregnant rat myometrium. Both PKA and PP2B coimmunoprecipitated with an AKAP150 in a gestational dependent manner, suggesting this AKAP localizes PKA and PP2B to the plasma membrane. ^ These data presented demonstrate the importance of the cAMP inhibitory mechanism in regulating uterine contractility. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein kinase C (PKC) isoforms, α, βI, and γ of cPKC subgroup, δ and ɛ of nPKC subgroup, and ζ of aPKC subgroup, were tyrosine phosphorylated in COS-7 cells in response to H2O2. These isoforms isolated from the H2O2-treated cells showed enhanced enzyme activity to various extents. The enzymes, PKC α and δ, recovered from the cells were independent of lipid cofactors for their catalytic activity. Analysis of mutated molecules of PKC δ showed that tyrosine residues, which are conserved in the catalytic domain of the PKC family, are critical for PKC activation induced by H2O2. These results suggest that PKC isoforms can be activated through tyrosine phosphorylation in a manner unrelated to receptor-coupled hydrolysis of inositol phospholipids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brefeldin A (BFA) inhibited the exchange of ADP ribosylation factor (ARF)-bound GDP for GTP by a Golgi-associated guanine nucleotide-exchange protein (GEP) [Helms, J. B. & Rothman, J. E. (1992) Nature (London) 360, 352–354; Donaldson, J. G., Finazzi, D. & Klausner, R. D. (1992) Nature (London) 360, 350–352]. Cytosolic ARF GEP was also inhibited by BFA, but after purification from bovine brain and rat spleen, it was no longer BFA-sensitive [Tsai, S.-C., Adamik, R., Moss, J. & Vaughan, M. (1996) Proc. Natl. Acad. Sci. USA 93, 305–309]. We describe here purification from bovine brain cytosol of a BFA-inhibited GEP. After chromatography on DEAE–Sephacel, hydroxylapatite, and Mono Q and precipitation at pH 5.8, GEP was eluted from Superose 6 as a large molecular weight complex at the position of thyroglobulin (≈670 kDa). After SDS/PAGE of samples from column fractions, silver-stained protein bands of ≈190 and 200 kDa correlated with activity. BFA-inhibited GEP activity of the 200-kDa protein was demonstrated following electroelution from the gel and renaturation by dialysis. Four tryptic peptides from the 200-kDa protein had amino acid sequences that were 47% identical to sequences in Sec7 from Saccharomyces cerevisiae (total of 51 amino acids), consistent with the view that the BFA-sensitive 200-kDa protein may be a mammalian counterpart of Sec7 that plays a similar role in cellular vesicular transport and Sec7 may be a GEP for one or more yeast ARFs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 200-kDa guanine nucleotide-exchange protein (p200 or GEP) for ADP-ribosylation factors 1 and 3 (ARF1 and ARF3) that was inhibited by brefeldin A (BFA) was purified earlier from cytosol of bovine brain cortex. Amino acid sequences of four tryptic peptides were 47% identical to that of Sec7 from Saccharomyces cerevisiae, which is involved in vesicular trafficking in the Golgi. By using a PCR-based procedure with two degenerate primers representing sequences of these peptides, a product similar in size to Sec7 that contained the peptide sequences was generated. Two oligonucleotides based on this product were used to screen a bovine brain library, which yielded one clone that was a partial cDNA for p200. The remainder of the cDNA was obtained by 5′ and 3′ rapid amplification of cDNA ends (RACE). The ORF of the cDNA encodes a protein of 1,849 amino acids (≈208 kDa) that is 33% identical to yeast Sec7 and 50% identical in the Sec7 domain region. On Northern blot analysis of bovine tissues, a ≈7.4-kb mRNA was identified that hybridized with a p200 probe; it was abundant in kidney, somewhat less abundant in lung, spleen, and brain, and still less abundant in heart. A six-His-tagged fusion protein synthesized in baculovirus-infected Sf9 cells demonstrated BFA-inhibited GEP activity, confirming that BFA sensitivity is an intrinsic property of this ARF GEP and not conferred by another protein component of the complex from which p200 was originally purified.