997 resultados para epitaxial growth


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epitaxial van der Waals (vdW) heterostructures of organic and layered materials are demonstrated to create high-performance organic electronic devices. High-quality rubrene films with large single-crystalline domains are grown on h-BN dielectric layers via vdW epitaxy. In addition, high carrier mobility comparable to free-standing single-crystal counterparts is achieved by forming interfacial electrical contacts with graphene electrodes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis is a step forward in understanding the growth of graphene, a single layer of carbon atoms, by annealing Silicon Carbide (SiC) thin films in Ultra High Vacuum. The research lead to the discovery that the details of the transition from SiC to graphene, providing, for the first time, atomic resolution images of the different stages of the transformation and a model of the growth. The epitaxial growth of graphene developed by this study is a cost effective procedure to obtain this material directly on Si chips, a breakthrough for the future electronic industry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Growth and characterization of high-temperature-superconducting YBa2Cu3O7 and several metallic-oxide thin films by pulsed laser deposition is described here. An overview of substrates employed for epitaxial growth of perovskite-related oxides is presented. Ag-doped YBa2Cu3O7 films grown on bare sapphire are shown to give T-c = 90 K, critical current > 10(6) A/cm(2) at 77 K and surface resistance = 450 mu Omega. Application of epitaxial metallic LaNiO3 thin films as an electrode for ferroelectric oxide and as a normal metal layer barrier in the superconductor-normal metal-superconductor (SNS) Josephson junction is presented. Observation of giant magnetoresistance (GMR) in the metallic La0-6Pb0-4MnO3 thin films up to 50% is highlighted.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The one-step preparation of highly anisotropic polymer semiconductor thin films directly from solution is demonstrated. The conjugated polymer poly(3-hexylthiophene) (P3HT) as well as P3HT:fullerene bulk-heterojunction blends can be spin-coated from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene (TCB) and a second carrier solvent such as chlorobenzene. Solidification is initiated by growth of macroscopic TCB spherulites followed by epitaxial crystallization of P3HT on TCB crystals. Subsequent sublimation of TCB leaves behind a replica of the original TCB spherulites. Thus, highly ordered thin films are obtained, which feature square-centimeter-sized domains that are composed of one spherulite-like structure each. A combination of optical microscopy and polarized photoluminescence spectroscopy reveals radial alignment of the polymer backbone in case of P3HT, whereas P3HT:fullerene blends display a tangential orientation with respect to the center of spherulite-like structures. Moreover, grazing-incidence wide-angle X-ray scattering reveals an increased relative degree of crystallinity and predominantly flat-on conformation of P3HT crystallites in the blend. The use of other processing methods such as dip-coating is also feasible and offers uniaxial orientation of the macromolecule. Finally, the applicability of this method to a variety of other semi-crystalline conjugated polymer systems is established. Those include other poly(3-alkylthiophene)s, two polyfluorenes, the low band-gap polymer PCPDTBT, a diketopyrrolopyrrole (DPP) small molecule as well as a number of polymer:fullerene and polymer:polymer blends. Macroscopic spherulite-like structures of the conjugated polymer poly(3-hexylthiophene) (P3HT) grow directly during spin-coating. This is achieved by processing P3HT or P3HT:fullerene bulk heterojunction blends from a mixture of the crystallizable solvent 1,3,5-trichlorobenzene and a second carrier solvent such as chlorobenzene. Epitaxial growth of the polymer on solidified solvent crystals gives rise to circular-symmetric, spherulite-like structures that feature a high degree of anisotropy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The surface of cubic silicon carbide (3C-SiC) hetero-epitaxial films grown on the (111) surface of silicon is a promising template for the subsequent epitaxial growth of III-V semiconductor layers and graphene. We investigate growth and post-growth approaches for controlling the surface roughness of epitaxial SiC to produce an optimal template. We first explore 3C-SiC growth on various degrees of offcut Si(111) substrates, although we observe that the SiC roughness tends to worsen as the degree of offcut increases. Hence we focus on post-growth approaches available on full wafers, comparing chemical mechanical polishing (CMP) and a novel plasma smoothening process. The CMP leads to a dramatic improvement, bringing the SiC surface roughness down to sub-nanometer level, though removing about 200 nm of the SiC layer. On the other hand, our proposed HCl plasma process appears very effective in smoothening selectively the sharpest surface topography, leading up to 30% improvement in SiC roughness with only about 50 nm thickness loss. We propose a simple physical model explaining the action of the plasma smoothening.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We followed by X-ray Photoelectron Spectroscopy (XPS) the time evolution of graphene layers obtained by annealing 3C SiC(111)/Si(111) crystals at different temperatures. The intensity of the carbon signal provides a quantification of the graphene thickness as a function of the annealing time, which follows a power law with exponent 0.5. We show that a kinetic model, based on a bottom-up growth mechanism, provides a full explanation to the evolution of the graphene thickness as a function of time, allowing to calculate the effective activation energy of the process and the energy barriers, in excellent agreement with previous theoretical results. Our study provides a complete and exhaustive picture of Si diffusion into the SiC matrix, establishing the conditions for a perfect control of the graphene growth by Si sublimation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nucleation and growth mechanisms during high temperature oxidation of liquid Al-3% Mg and Al-3% Mg-3% Si alloys were studied with the aim of enhancing our understanding of a new composite fabrication process. The typical oxidation sequence consists of an initial event of rapid but brief oxidation, followed by an incubation period of limited oxide growth after which bulk Al2O3/Al composite forms. A duplex oxide layer, MgO (upper) and MgAl2O4 (lower), forms on the alloy surface during initial oxidation and incubation. The spinel layer remains next to the liquid alloy during bulk oxide growth and is the eventual repository for most of the magnesium in the original alloy. Metal microchannels developed during incubation continuously supply alloy through the composite to the reaction interface. During the growth process, a layered structure exists at the upper extremity of the composite, consisting of MgO at the top surface, MgAl2O4 (probably discontinuous), Al alloy, and finally the bulk Al2O3 composite containing microchannels of the alloy. The bulk oxide growth mechanism appears to involve continuous formation and dissolution of the Mg-rich oxides at the surface, diffusion of oxygen through the underlying liquid metal, and epitaxial growth of Al2O3 on the existing composite body. The roles of Mg and Si in the composite growth process are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We show by numerical simulations that discretized versions of commonly studied continuum nonlinear growth equations (such as the Kardar-Parisi-Zhangequation and the Lai-Das Sarma-Villain equation) and related atomistic models of epitaxial growth have a generic instability in which isolated pillars (or grooves) on an otherwise flat interface grow in time when their height (or depth) exceeds a critical value. Depending on the details of the model, the instability found in the discretized version may or may not be present in the truly continuum growth equation, indicating that the behavior of discretized nonlinear growth equations may be very different from that of their continuum counterparts. This instability can be controlled either by the introduction of higher-order nonlinear terms with appropriate coefficients or by restricting the growth of pillars (or grooves) by other means. A number of such ''controlled instability'' models are studied by simulation. For appropriate choice of the parameters used for controlling the instability, these models exhibit intermittent behavior, characterized by multiexponent scaling of height fluctuations, over the time interval during which the instability is active. The behavior found in this regime is very similar to the ''turbulent'' behavior observed in recent simulations of several one- and two-dimensional atomistic models of epitaxial growth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vertically aligned zinc oxide (ZnO) hierarchical nanostructures were developed by homo-epitaxial growth method using nickel as catalyst, and their physical properties were investigated and reported. ZnO nanorods grown by vapor-liquid-solid method are single crystalline and grown along the < 001 > direction, whereas the second order nano-branches are grown along the < 110 > direction. The homo-epitaxial relation between nano-branches (ZnOb) and ZnO cores (ZnOc) is found to be (110)ZnOb//(110)ZnOc and (002)ZnOb//(002)ZnOc. The simple and hierarchical nanostructures exhibited ultra-violet emission peak at 380 nm as near band edge emission of ZnO and have very weak defects related peak at 492 nm. (C) 2013 The Electrochemical Society. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have investigated the structural and optical properties of III-V nanowires, and axial and radial nanowire heterostructures, fabricated by metalorganic chemical vapor deposition. In addition to binary nanowires, such as GaAs, InAs, and InP, we have demonstrated ternary InGaAs and AlGaAs nanowires. Core-shell nanowires consisting of GaAs cores with AlGaAs shells, and core-multishell nanowires with alternating shells of AlGaAs and GaAs, exhibit strong photoluminescence. Axial segments of InGaAs have been incorporated within GaAs nanowires to form GaAs/InGaAs nanowire superlattices. We have developed a two-temperature growth procedure to optimize nanowire morphology. An initial high temperature step promotes nucleation and epitaxial growth of straight (111)B-oriented nanowires. Lower temperatures are employed subsequently, to minimise radial growth. © 2007 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report a two-temperature procedure for the growth of GaAs nanowires by metalorganic chemical vapour deposition. An initial high temperature step affords effective nucleation and promotes epitaxial growth of straight (111)B-oriented nanowires. Lower temperatures are employed subsequently, to minimise nanowire tapering during growth. © 2006 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report the influence of growth parameters and post-growth annealing on the structural characterizations and magnetic properties of (Ga, Cr)As films. The crystalline quality and magnetic properties are sensitive to the growth conditions. The single-phase (Ga, Cr)As film with the Curie temperature of 10 K is synthesized at growth temperature T-s = 250 degrees C and with nominal Cr content x = 0.016. However, for the films with x > 0.02, the aggregation of Cr atoms is strongly enhanced as both T. and x increase, which not only brings strong compressive strain in the epilayer, but also roughens the surface. The origin of room-temperature ferromagnetism in (Ga, Cr)As films with nanoclusters is also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Epitaxial growth of Zn-doped InGaAs on InP substrates has been carried out at 550degreesC by LP-MOCVD. Hole concentration as high as 6 x 10(19)cm(-3) has been achieved at the H-2 flow rate of 20 sccm through DEZn bubbler. The lattice constant of Zn-doped InGaAs was found to be dependent on the flow rate of DEZn, and the tensile strain mismatch increases with increasing H-2 flow rate of DEZn. The negative lattice mismatch of heavily Zn-dopped InGaAs may be due to, the small covalent bonding radius of zinc and the combination of butane from ethyl of DEZn,and TEGa. And the latter accelerates the pyrolysis of TEGa, which is the dominant mechanism in determining the negative mismatch of Zn-doped InGaAs. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vertically well-aligned ZnO nanoridge, nanorod, nanorod-nanowall junction, and nanotip arrays have been successfully synthesized on Si (100) substrates using a pulsed laser deposition prepared ZnO film as seed layer by thermal evaporation method. Experimental results illustrated that the growth of different morphologies of ZnO nanostructures was strongly dependent upon substrate temperature. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the ZnO nanostructures were single crystals with a wurtzite structure. Compared with those of the other nanostructures, the photoluminescence (PL) spectrum of nanorod-nanowall junctions showed the largest intensity ratio of ultraviolet (UV) to yellow-green emission and the smallest full-width at half-maximum (FWHM) of the UV peak, reflecting the high optical quality and nearly defect free of crystal structure. The vertical alignment of the nanowire array on the substrate is attributed to the epitaxial growth of the nanostructures from the ZnO buffer layer. The growth mechanism was also discussed in detail. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The reduction of residual strain in cubic GaN growth by inserting a thermoannealing process is investigated. It is found that the epilayer with smaller tensile strain is subject to a wider optimal "growth window." Based on this process, we obtain the high-quality GaN film of pure cubic phase with the thickness of 4 mum by metalorganic chemical vapor deposition. The photoluminescence spectrum at room temperature shows the thick GaN layer has a near-band emission peak with a full width at half maximum of 42 meV which confirms its high crystal quality, further supported by the x-ray (002) diffraction measurement. A simplified model is demonstrated to interpret this strain effect on the growth process. (C) 2003 American Institute of Physics.