988 resultados para epidemic model
Resumo:
Knowing which individuals can be more efficient in spreading a pathogen throughout a determinate environment is a fundamental question in disease control. Indeed, over recent years the spread of epidemic diseases and its relationship with the topology of the involved system have been a recurrent topic in complex network theory, taking into account both network models and real-world data. In this paper we explore possible correlations between the heterogeneous spread of an epidemic disease governed by the susceptible-infected-recovered (SIR) model, and several attributes of the originating vertices, considering Erdos-Renyi (ER), Barabasi-Albert (BA) and random geometric graphs (RGG), as well as a real case study, the US air transportation network, which comprises the 500 busiest airports in the US along with inter-connections. Initially, the heterogeneity of the spreading is achieved by considering the RGG networks, in which we analytically derive an expression for the distribution of the spreading rates among the established contacts, by assuming that such rates decay exponentially with the distance that separates the individuals. Such a distribution is also considered for the ER and BA models, where we observe topological effects on the correlations. In the case of the airport network, the spreading rates are empirically defined, assumed to be directly proportional to the seat availability. Among both the theoretical and real networks considered, we observe a high correlation between the total epidemic prevalence and the degree, as well as the strength and the accessibility of the epidemic sources. For attributes such as the betweenness centrality and the k-shell index, however, the correlation depends on the topology considered.
Resumo:
We employ the approach of stochastic dynamics to describe the dissemination of vector-borne diseases such as dengue, and we focus our attention on the characterization of the threshold of the epidemic. The coexistence space comprises two representative spatial structures for both human and mosquito populations. The human population has its evolution described by a process that is similar to the Susceptible-Infected-Recovered (SIR) dynamics. The population of mosquitoes follows a dynamic of the type of the Susceptible Infected-Susceptible (SIS) model. The coexistence space is a bipartite lattice constituted by two structures representing the human and mosquito populations. We develop a truncation scheme to solve the evolution equations for the densities and the two-site correlations from which we get the threshold of the disease and the reproductive ratio. We present a precise deØnition of the reproductive ratio which reveals the importance of the correlations developed in the early stage of the disease. According to our deØnition, the reproductive rate is directed related to the conditional probability of the occurrence of a susceptible human (mosquito) given the presence in the neighborhood of an infected mosquito (human). The threshold of the epidemic as well as the phase transition between the epidemic and the non-epidemic states are also obtained by performing Monte Carlo simulations. References: [1] David R. de Souza, T^ania Tom∂e, , Suani R. T. Pinho, Florisneide R. Barreto and M∂ario J. de Oliveira, Phys. Rev. E 87, 012709 (2013). [2] D. R. de Souza, T. Tom∂e and R. M. ZiÆ, J. Stat. Mech. P03006 (2011).
Resumo:
BACKGROUND Estimates of the size of the undiagnosed HIV-infected population are important to understand the HIV epidemic and to plan interventions, including "test-and-treat" strategies. METHODS We developed a multi-state back-calculation model to estimate HIV incidence, time between infection and diagnosis, and the undiagnosed population by CD4 count strata, using surveillance data on new HIV and AIDS diagnoses. The HIV incidence curve was modelled using cubic splines. The model was tested on simulated data and applied to surveillance data on men who have sex with men in The Netherlands. RESULTS The number of HIV infections could be estimated accurately using simulated data, with most values within the 95% confidence intervals of model predictions. When applying the model to Dutch surveillance data, 15,400 (95% confidence interval [CI] = 15,000, 16,000) men who have sex with men were estimated to have been infected between 1980 and 2011. HIV incidence showed a bimodal distribution, with peaks around 1985 and 2005 and a decline in recent years. Mean time to diagnosis was 6.1 (95% CI = 5.8, 6.4) years between 1984 and 1995 and decreased to 2.6 (2.3, 3.0) years in 2011. By the end of 2011, 11,500 (11,000, 12,000) men who have sex with men in The Netherlands were estimated to be living with HIV, of whom 1,750 (1,450, 2,200) were still undiagnosed. Of the undiagnosed men who have sex with men, 29% (22, 37) were infected for less than 1 year, and 16% (13, 20) for more than 5 years. CONCLUSIONS This multi-state back-calculation model will be useful to estimate HIV incidence, time to diagnosis, and the undiagnosed HIV epidemic based on routine surveillance data.
Resumo:
Domestic dog rabies is an endemic disease in large parts of the developing world and also epidemic in previously free regions. For example, it continues to spread in eastern Indonesia and currently threatens adjacent rabies-free regions with high densities of free-roaming dogs, including remote northern Australia. Mathematical and simulation disease models are useful tools to provide insights on the most effective control strategies and to inform policy decisions. Existing rabies models typically focus on long-term control programs in endemic countries. However, simulation models describing the dog rabies incursion scenario in regions where rabies is still exotic are lacking. We here describe such a stochastic, spatially explicit rabies simulation model that is based on individual dog information collected in two remote regions in northern Australia. Illustrative simulations produced plausible results with epidemic characteristics expected for rabies outbreaks in disease free regions (mean R0 1.7, epidemic peak 97 days post-incursion, vaccination as the most effective response strategy). Systematic sensitivity analysis identified that model outcomes were most sensitive to seven of the 30 model parameters tested. This model is suitable for exploring rabies spread and control before an incursion in populations of largely free-roaming dogs that live close together with their owners. It can be used for ad-hoc contingency or response planning prior to and shortly after incursion of dog rabies in previously free regions. One challenge that remains is model parameterisation, particularly how dogs' roaming and contacts and biting behaviours change following a rabies incursion in a previously rabies free population.
Resumo:
Background. Excess weight and obesity are at epidemic proportions in the United States and place individuals at increased risk for a variety of chronic conditions. Rates of diabetes, high blood pressure, coronary artery disease, stroke, cancer, and arthritis are all influenced by the presence of obesity. Small reductions in excess weight can produce significant positive clinical outcomes. Healthcare organizations have a vital role to play in the identification and management of obesity. Currently, healthcare providers do not adequately diagnose and manage excess weight in patients. Lack of skill, time, and knowledge are commonly cited as reasons for non-adherence to recommended standards of care. The Chronic Care Model offers an approach to healthcare organizations for chronic disease management. The model consists of six elements that work together to empower both providers and patients to have more productive interactions: the community, the health system itself, self-management support, delivery system design, decision support, and clinical information systems. The model and its elements may offer a framework through which healthcare organizations can adapt to support, educate, and empower providers and patients in the management of excess weight and obesity. Successful management of excess weight will reduce morbidity and mortality of many chronic conditions. Purpose. The purpose of this review is to synthesize existing research on the effectiveness of the Chronic Care Model and its elements as they relate to weight management and behaviors associated with maintaining a healthy weight. Methods: A narrative review of the literature between November 1998 and November 2008 was conducted. The review focused on clinical trials, systematic reviews, and reports related to the chronic care model or its elements and weight management, physical activity, nutrition, or diabetes. Fifty-nine articles are included in the review. Results. This review highlights the use of the Chronic Care Model and its elements that can result in improved quality of care and clinical outcomes related to weight management, physical activity, nutrition, and diabetes. Conclusions. Healthcare organizations can use the Chronic Care Model framework to implement changes within their systems to successfully address overweight and obesity in their patient populations. Specific recommendations for operationalizing the Chronic Care Model elements for weight management are presented.^
Resumo:
Placenta, as the sole transport mechanism between mother and fetus, links the maternal physical state and the immediate and life-long outcomes of the offspring. The present study examined the mechanisms behind the effect of maternal obesity on placental lipid accumulation and metabolism. Pregnant Obese Prone (OP) and Obese Resistant (OR) rat strains were fed a control diet throughout gestation. Placentas were collected on gestational d21 for analysis and frozen placental sections were analyzed for fat accumulation as well as β-Catenin and Dkk1 localization. Additionally, DKK1 was overexpressed in JEG3 trophoblast cells, followed by treatment with NEFA and Oil Red O stain quantification and mRNA analysis to determine the relationship between placental DKK1 and lipid accumulation. Maternal plasma and placental NEFA and TG were elevated in OP dams, and offspring of OP dams were smaller than OR. Placental Dkk1 mRNA content was 4-fold lower in OP placentas, and there was a significant increase in β-Catenin accumulation as well as mRNA content of fat transport and TG synthesis enzymes, including Ppar-delta, Fatp1, Fat/Cd36, Lipin1, and Lipin3. There was significant lipid accumulation within the decidual zones in OP but not OR placentas, and the thickness of the decidual and junctional zones was significantly smaller in OP than OR placentas. Overexpression of DKK1 in JEG3 cells decreased lipid accumulation and the mRNA content of PPAR-Delta, FATP1, FAT/CD36, LIPIN1, and LIPIN3. Our results indicate that Dkk1 may be regulating placental lipid metabolism through Wnt-mediated mechanisms. Additionally, recent studies have suggested that maternal obesity may also program early development of non-alcoholic fatty liver disease (NAFLD), rates of which have correlated with the increase in the obesity epidemic. In the current study, livers of OP offspring had significantly increased TG content (P<0.05) and lipid accumulation when compared to offspring of OR dams. Additionally, hepatic Dkk1 mRNA content was significantly decreased in OP livers when compared to OR (P<0.05), and treating H4IIECR rat hepatocyte cells with NEFA showed that Dkk1 mRNA was also decreased in NEFA-treated cells (P<0.05) that also had lipid accumulation. Chromatin Immunoprecipitation (ChIP) analysis of the Dkk1 promoter in fetal livers showed a pattern of histone modifications associated with decreased gene transcription in OP offspring, which agrees with our gene expression data. These results demonstrate that the hepatic Dkk1 gene is epigenetically regulated via histone modification in neonatal offspring in the current model of gestational obesity, and future studies will be needed to determine whether these changes contribute to excessive hepatic lipid accumulation in offspring of obese dams.
Resumo:
This paper is concerned with a stochastic SIR (susceptible-infective-removed) model for the spread of an epidemic amongst a population of individuals, with a random network of social contacts, that is also partitioned into households. The behaviour of the model as the population size tends to infinity in an appropriate fashion is investigated. A threshold parameter which determines whether or not an epidemic with few initial infectives can become established and lead to a major outbreak is obtained, as are the probability that a major outbreak occurs and the expected proportion of the population that are ultimately infected by such an outbreak, together with methods for calculating these quantities. Monte Carlo simulations demonstrate that these asymptotic quantities accurately reflect the behaviour of finite populations, even for only moderately sized finite populations. The model is compared and contrasted with related models previously studied in the literature. The effects of the amount of clustering present in the overall population structure and the infectious period distribution on the outcomes of the model are also explored.
Resumo:
Given the scale of the current obesity epidemic and associated health consequences there has been increasing concern about the economic burden placed on society in terms of direct healthcare costs and indirect societal costs. In the Republic of Ireland these costs were estimated at €1.13 billion for 2009. The total direct healthcare costs for six major obesity related conditions (coronary heart disease & stroke, cancer, hypertension, type 2 diabetes and knee osteoarthritis) in the same year were estimated at €2.55 billion. The aim of this research is to project disease burden and direct healthcare costs for these conditions in Ireland to 2030 using the established model developed by the Health Forum (UK) for the Foresight: Tackling Obesities project.
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.
Rainfall, Mosquito Density and the Transmission of Ross River Virus: A Time-Series Forecasting Model