881 resultados para enzyme localization
Resumo:
Phospholipase D (PLD) hydrolyzes phosphatidylcholine to generate phosphatidic acid. In mammalian cells this reaction has been implicated in the recruitment of coatomer to Golgi membranes and release of nascent secretory vesicles from the trans-Golgi network. These observations suggest that PLD is associated with the Golgi complex; however, to date, because of its low abundance, the intracellular localization of PLD has been characterized only indirectly through overexpression of chimeric proteins. We have used highly sensitive antibodies to PLD1 together with immunofluorescence and immunogold electron microscopy as well as cell fractionation to identify the intracellular localization of endogenous PLD1 in several cell types. Although PLD1 had a diffuse staining pattern, it was enriched significantly in the Golgi apparatus and was also present in cell nuclei. On fragmentation of the Golgi apparatus by treatment with nocodazole, PLD1 closely associated with membrane fragments, whereas after inhibition of PA synthesis, PLD1 dissociated from the membranes. Overexpression of an hemagglutinin-tagged form of PLD1 resulted in displacement of the endogenous enzyme from its perinuclear localization to large vesicular structures. Surprisingly, when the Golgi apparatus collapsed in response to brefeldin A, the nuclear localization of PLD1 was enhanced significantly. Our data show that the intracellular localization of PLD1 is consistent with a role in vesicle trafficking from the Golgi apparatus and suggest that it also functions in the cell nucleus.
Resumo:
Vsx-1 is a paired-like:CVC homeobox gene whose expression is linked to bipolar cell differentiation during zebrafish retinogenesis. We used a yeast two-hybrid screen to identify proteins interacting with Vsx-1 and isolated Ubc9, an enzyme that conjugates the small ubiquitin-like modifier SUMO-1. Despite its interaction with Ubc9, we show that Vsx-1 is not a substrate for SUMO-1 in COS-7 cells or in vitro. When a yeast two-hybrid assay is used, deletion analysis of the interacting domain on Vsx-1 shows that Ubc9 binds to a nuclear localization signal (NLS) at the NH2 terminus of the homeodomain. In SW13 cells, Vsx-1 localizes to the nucleus and is excluded from nucleoli. Deletion of the NLS disrupts this nuclear localization, resulting in a diffuse cytoplasmic distribution of Vsx-1. In SW13 AK1 cells that express low levels of endogenous Ubc9, Vsx-1 accumulates in a perinuclear ring and colocalizes with an endoplasmic reticulum marker. However, NLS-tagged STAT1 protein exhibits normal nuclear localization in both SW13 and SW13 AK1 cells, suggesting that nuclear import is not globally disrupted. Cotransfection of Vsx-1 with Ubc9 restores Vsx-1 nuclear localization in SW3 AK1 cells and demonstrates that Ubc9 is required for the nuclear localization of Vsx-1. Ubc9 continues to restore nuclear localization even after a C93S active site mutation has eliminated its SUMO-1-conjugating ability. These results suggest that Ubc9 mediates the nuclear localization of Vsx-1, and possibly other proteins, through a nonenzymatic mechanism that is independent of SUMO-1 conjugation.
Resumo:
Enzymes of the de novo purine biosynthetic pathway may form a multienzyme complex to facilitate substrate flux through the ten serial steps constituting the pathway. One likely strategy for complex formation is the use of a structural scaffold such as the cytoskeletal network or subcellular membrane of the cell to mediate protein–protein interactions. To ascertain whether this strategy pertains to the de novo purine enzymes, the localization pattern of the third purine enzyme, glycinamide ribonucleotide transformylase (GAR Tfase) was monitored in live Escherichia coli and mammalian cells. Genes encoding human as well as E. coli GAR Tfase fused with green fluorescent protein (GFP) were introduced into their respective cells with regulated expression of proteins and localization patterns monitored by using confocal fluorescence microscopy. In both instances images showed proteins to be diffused throughout the cytoplasm. Thus, GAR Tfase is not localized to an existing cellular architecture, so this device is probably not used to concentrate the members of the pathway. However, discrete clusters of the pathway may still exist throughout the cytoplasm.
Resumo:
NADP+-isocitrate dehydrogenase (NADP+-IDH; EC 1.1.1.42) is involved in the supply of 2-oxoglutarate for ammonia assimilation and glutamate synthesis in higher plants through the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle. Only one NADP+-IDH form of cytosolic localization was detected in green cotyledons of pine (Pinus spp.) seedlings. The pine enzyme was purified and exhibited molecular and kinetic properties similar to those described for NADP+-IDH from angiosperm, with a higher catalytic efficiency (105 m−1 s−1) than the deduced efficiencies for GS and GOGAT in higher plants. A polyclonal antiserum was raised against pine NADP+-IDH and used to assess protein expression in the seedlings. Steady-state levels of NADP+-IDH were coordinated with GS during seed germination and were associated with GS/GOGAT enzymes during chloroplast biogenesis, suggesting that NADP+-IDH is involved in the provision of carbon skeletons for the synthesis of nitrogen-containing molecules. However, a noncoordinated pattern of NADP+-IDH and GS/GOGAT was observed in advanced stages of cotyledon development and in the hypocotyl. A detailed analysis in hypocotyl sections revealed that NADP+-IDH abundance was inversely correlated with the presence of GS, GOGAT, and ribulose-1,5-bisphosphate carboxylase/oxygenase but was associated with the differentiation of the organ. These results cannot be explained by the accepted role of the enzyme in nitrogen assimilation and strongly suggest that NADP+-IDH may have other, as-yet-unknown, biological functions.
Resumo:
Phosphoenolpyruvate carboxylase (PEPC) activity and corresponding mRNA levels were investigated in developing and germinating wheat (Triticum aestivum) grains. During grain development PEPC activity increased to reach a maximum 15 d postanthesis. Western-blot experiments detected two main PEPC polypeptides with apparent molecular masses of 108 and 103 kD. The most abundant 103-kD PEPC subunit remained almost constant throughout the process of grain development and in the scutellum and aleurone layer of germinating grains. The less-abundant 108-kD polypeptide progressively disappeared during the second half of grain development and was newly synthesized in the scutellum and aleurone layer of germinating grains. PEPC mRNA was detected throughout the process of grain development; however, in germinating grains PEPC mRNA accumulated transiently in the scutellum and aleurone layer, showing a sharp maximum 24 h after imbibition. Immunolocalization studies revealed the presence of the enzyme in tissues with a high metabolic activity, as well as in the vascular tissue of the crease area of developing grains. A clear increase in PEPC was observed in the scutellar epithelium of grains 24 h after imbibition. The data suggest that the transiently formed PEPC mRNA in the scutellar epithelium encodes the 108-kD PEPC subunit.
Resumo:
In the developing endosperm of monocotyledonous plants, starch granules are synthesized and deposited within the amyloplast. A soluble stromal fraction was isolated from amyloplasts of immature maize (Zea mays L.) endosperm and analyzed for enzyme activities and polypeptide content. Specific activities of starch synthase and starch-branching enzyme (SBE), but not the cytosolic marker alcohol dehydrogenase, were strongly enhanced in soluble amyloplast stromal fractions relative to soluble extracts obtained from homogenized kernels or endosperms. Immunoblot analysis demonstrated that starch synthase I, SBEIIb, and sugary1, the putative starch-debranching enzyme, were each highly enriched in the amyloplast stroma, providing direct evidence for the localization of starch-biosynthetic enzymes within this compartment. Analysis of maize mutants shows the deficiency of the 85-kD SBEIIb polypeptide in the stroma of amylose extender cultivars and that the dull mutant lacks a >220-kD stromal polypeptide. The stromal fraction is distinguished by differential enrichment of a characteristic group of previously undocumented polypeptides. N-terminal sequence analysis revealed that an abundant 81-kD stromal polypeptide is a member of the Hsp70 family of stress-related proteins. Moreover, the 81-kD stromal polypeptide is strongly recognized by antibodies specific for an Hsp70 of the chloroplast stroma. These findings are discussed in light of implications for the correct folding and assembly of soluble, partially soluble, and granule-bound starch-biosynthetic enzymes during import into the amyloplast.
Resumo:
Starch granules from maize (Zea mays) contain a characteristic group of polypeptides that are tightly associated with the starch matrix (C. Mu-Forster, R. Huang, J.R. Powers, R.W. Harriman, M. Knight, G.W. Singletary, P.L. Keeling, B.P. Wasserman [1996] Plant Physiol 111: 821–829). Zeins comprise about 50% of the granule-associated proteins, and in this study their spatial distribution within the starch granule was determined. Proteolysis of starch granules at subgelatinization temperatures using the thermophilic protease thermolysin led to selective removal of the zeins, whereas granule-associated proteins of 32 kD or above, including the waxy protein, starch synthase I, and starch-branching enzyme IIb, remained refractory to proteolysis. Granule-associated proteins from maize are therefore composed of two distinct classes, the surface-localized zeins of 10 to 27 kD and the granule-intrinsic proteins of 32 kD or higher. The origin of surface-localized δ-zein was probed by comparing δ-zein levels of starch granules obtained from homogenized whole endosperm with granules isolated from amyloplasts. Starch granules from amyloplasts contained markedly lower levels of δ-zein relative to granules prepared from whole endosperm, thus indicating that δ-zein adheres to granule surfaces after disruption of the amyloplast envelope. Cross-linking experiments show that the zeins are deposited on the granule surface as aggregates. In contrast, the granule-intrinsic proteins are prone to covalent modification, but do not form intermolecular cross-links. We conclude that individual granule intrinsic proteins exist as monomers and are not deposited in the form of multimeric clusters within the starch matrix.
Resumo:
Peptide methionine sulfoxide reductase (MsrA; EC 1.8.4.6) is a ubiquitous protein that can reduce methionine sulfoxide residues in proteins as well as in a large number of methyl sulfoxide compounds. The expression of MsrA in various rat tissues was determined by using immunocytochemical staining. Although the protein was found in all tissues examined, it was specifically localized to renal medulla and retinal pigmented epithelial cells, and it was prominent in neurons and throughout the nervous system. In addition, blood and alveolar macrophages showed high expression of the enzyme. The msrA gene was mapped to the central region of mouse chromosome 14, in a region of homology with human chromosomes 13 and 8p21.
Resumo:
By using reverse transcription-coupled PCR on rat anterior pituitary RNA, we isolated a 285-bp cDNA coding for a novel subtilisin/kexin-like protein convertase (PC), called rat (r) PC7. By screening rat spleen and PC12 cell lambda gt11 cDNA libraries, we obtained a composite 3.5-kb full-length cDNA sequence of rPC7. The open reading frame codes for a prepro-PC with a 36-amino acid signal peptide, a 104-amino acid prosegment ending with a cleavable RAKR sequence, and a 747-amino acid type I membrane-bound glycoprotein, representing the mature form of this serine proteinase. Phylogenetic analysis suggests that PC7 represents the most divergent enzyme of the mammalian convertase family and that it is the closest member to the yeast convertases krp and kexin. Northern blot analyses demonstrated a widespread expression with the richest source of rPC7 mRNA being the colon and lymphoid-associated tissues. In situ hybridization revealed a distinctive tissue distribution that sometimes overlaps with that of furin, suggesting that PC7 has widespread proteolytic functions. The gene for PC7 (Pcsk7) was mapped to mouse chromosome 9 by linkage analysis of an interspecific backcross DNA panel.
Resumo:
Several enzymes involved in the formation of steroids of the pregnene and pregnane series have been identified in the brain, but the biosynthesis of testosterone has never been reported in the central nervous system. In the present study, we have investigated the distribution and bioactivity of 17beta-hydroxysteroid dehydrogenase (17beta-HSD) (EC 1.1.1.62; a key enzyme that is required for the formation of testosterone and estradiol) in the brain of the male frog Rana ridibunda. By using an antiserum against human type I placental 17beta-HSD, immunoreactivity was localized in a discrete group of ependymal glial cells bordering the telencephalic ventricles. HPLC analysis of telencephalon and hypothalamus extracts combined with testosterone radioimmunoassay revealed the existence of two peaks coeluting with testosterone and 5alpha-dihydrotestosterone. After HPLC purification, testosterone was identified by gas chromatography/mass spectrometry. Incubation of telencephalon slices with [3H]pregnenolone resulted in the formation of metabolites which coeluted with progesterone, 17alpha-hydroxyprogesterone, dehydroepiandrosterone, androstenedione, testosterone, and 5alpha-dihydrotestosterone. The newly synthesized steroid comigrating with testosterone was selectively immunodetected by using testosterone antibodies. These data indicate that 17beta-HSD is expressed in a subpopulation of gliocytes in the frog telencephalon and that telencephalic cells are capable of synthesizing various androgens, including dehydroepiandrosterone, androstenedione, testosterone, and 5alpha-dihydrotestosterone.
Resumo:
Heme oxygenase 2 (HO-2), which synthesizes carbon monoxide (CO), has been localized by immunohistochemistry to endothelial cells and adventitial nerves of blood vessels. HO-2 is also localized to neurons in autonomic ganglia, including the petrosal, superior cervical, and nodose ganglia, as well as ganglia in the myenteric plexus of the intestine. Enzyme studies demonstrated that tin protoporphyrin-9 is a selective inhibitor of HO with approximately 10-fold selectivity for HO over endothelial nitric oxide synthase (NOS) and soluble guanylyl cyclase. Inhibition of HO activity by tin protoporphyrin 9 reverses the component of endothelial-derived relaxation of porcine distal pulmonary arteries not reversed by an inhibitor of NOS. Thus, CO, like NO, may have endothelial-derived relaxing activity. The similarity of NOS and HO-2 localizations and functions in blood vessels and the autonomic nervous system implies complementary and possibly coordinated physiologic roles for these two mediators.
Resumo:
Srp1p, the protein encoded by SRP1 of Saccharomyces cerevisiae, is a nuclear-pore-associated protein. Its Xenopus homolog, importin, was recently shown to be an essential component required for nuclear localization signal (NLS)-dependent binding of karyophilic proteins to the nuclear envelope [Gorlich, D., Prehn, S., Laskey, R. A. & Hartman, E. (1994) Cell 79, 767-778]. We have discovered a protein kinase whose activity is stimulated by Srp1p (Srp1p fused to glutathione S-transferase and expressed in Escherichia coli) and is detected by phosphorylation of Srp1p and of a 36-kDa protein, a component of the protein kinase complex. The enzyme, called Srp1p kinase, is a protein-serine kinase and was found in extracts in two related complexes of approximately 180 kDa and 220 kDa. The second complex, when purified, contained four protein components including the 36-kDa protein. We observed that, upon purification of the kinase, phosphorylation of Srp1p became very weak, while activation of phosphorylation of the 36-kDa protein by Srp1p remained unaltered. Significantly, NLS peptides and the nuclear proteins we have tested greatly stimulated phosphorylation of Srp1p, suggesting that Srp1p, complexed with karyophilic proteins carrying an NLS, is the in vivo substrate of this protein kinase.
Resumo:
The production of reactive oxygen species (ROS) within endothelial cells may have several effects, including alterations in the activity of paracrine factors, gene expression, apoptosis, and cellular injury. Recent studies indicate that a phagocyte-type NAD(P)H oxidase is a major source of endothelial ROS. In contrast to the high-output phagocytic oxidase, the endothelial enzyme has much lower biochemical activity and a different substrate specificity (NADH.NADPH). In the present study, we (1) cloned and characterized the cDNA and predicted amino acid structures of the 2 major subunits of rat coronary microvascular endothelial cell NAD(P)H oxidase, gp91-phox and p22-phox; (2) undertook a detailed comparison with phagocytic NADPH oxidase sequences; and (3) studied the subcellular location of these subunits in endothelial cells. Although these studies revealed an overall high degree of homology (.90%) between the endothelial and phagocytic oxidase subunits, the endothelial gp91-phox sequence has potentially important differences in a putative NADPH-binding domain and in putative glycosylation sites. In addition, the subcellular location of the endothelial gp91-phox and p22-phox subunits is significantly different from that reported for the neutrophil oxidase, in that they are predominantly intracellular and collocated in the vicinity of the endoplasmic reticulum. This first detailed characterization of gp91-phox and p22-phox structure and location in endothelial cells provides new data that may account, in part, for the differences in function between the phagocytic and endothelial NAD(P)H oxidases.
Resumo:
This study aimed to identify novel biomarkers for thyroid carcinoma diagnosis and prognosis. We have constructed a human single-chain variable fragment (scFv) antibody library that was selected against tumour thyroid cells using the BRASIL method (biopanning and rapid analysis of selective interactive ligands) and phage display technology. One highly reactive clone, scFv-C1, with specific binding to papillary thyroid tumour proteins was confirmed by ELISA, which was further tested against a tissue microarray that comprised of 229 thyroid tissues, including: 110 carcinomas (38 papillary thyroid carcinomas (PTCs), 42 follicular carcinomas, 30 follicular variants of PTC), 18 normal thyroid tissues, 49 nodular goitres (NG) and 52 follicular adenomas. The scFv-C1 was able to distinguish carcinomas from benign lesions (P=0.0001) and reacted preferentially against T1 and T2 tumour stages (P=0.0108). We have further identified an OTU domain-containing protein 1, DUBA-7 deubiquitinating enzyme as the scFv-binding antigen using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. The strategy of screening and identifying a cell-surface-binding antibody against thyroid tissues was highly effective and resulted in a useful biomarker that recognises malignancy among thyroid nodules and may help identify lower-risk cases that can benefit from less-aggressive management.
Resumo:
Nutrient restriction during the early stages of life usually leads to alterations in glucose homeostasis, mainly insulin secretion and sensitivity, increasing the risk of metabolic disorders in adulthood. Despite growing evidence regarding the importance of insulin clearance during glucose homeostasis in health and disease, no information exists about this process in malnourished animals. Thus, in the present study, we aimed to determine the effect of a nutrient-restricted diet on insulin clearance using a model in which 30-d-old C57BL/6 mice were exposed to a protein-restricted diet for 14 weeks. After this period, we evaluated many metabolic variables and extracted pancreatic islet, liver, gastrocnemius muscle (GCK) and white adipose tissue samples from the control (normal-protein diet) and restricted (low-protein diet, LP) mice. Insulin concentrations were determined using RIA and protein expression and phosphorylation by Western blot analysis. The LP mice exhibited lower body weight, glycaemia, and insulinaemia, increased glucose tolerance and altered insulin dynamics after the glucose challenge. The improved glucose tolerance could partially be explained by an increase in insulin sensitivity through the phosphorylation of the insulin receptor/protein kinase B and AMP-activated protein kinase/acetyl-CoA carboxylase in the liver, whereas the changes in insulin dynamics could be attributed to reduced insulin secretion coupled with reduced insulin clearance and lower insulin-degrading enzyme (IDE) expression in the liver and GCK. In summary, protein-restricted mice not only produce and secrete less insulin, but also remove and degrade less insulin. This phenomenon has the double benefit of sparing insulin while prolonging and potentiating its effects, probably due to the lower expression of IDE in the liver, possibly with long-term consequences.