885 resultados para engineering geology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Site-specific geotechnical data are always random and variable in space. In the present study, a procedure for quantifying the variability in geotechnical characterization and design parameters is discussed using the site-specific cone tip resistance data (qc) obtained from static cone penetration test (SCPT). The parameters for the spatial variability modeling of geotechnical parameters i.e. (i) existing trend function in the in situ qc data; (ii) second moment statistics i.e. analysis of mean, variance, and auto-correlation structure of the soil strength and stiffness parameters; and (iii) inputs from the spatial correlation analysis, are utilized in the numerical modeling procedures using the finite difference numerical code FLAC 5.0. The influence of consideration of spatially variable soil parameters on the reliability-based geotechnical deign is studied for the two cases i.e. (a) bearing capacity analysis of a shallow foundation resting on a clayey soil, and (b) analysis of stability and deformation pattern of a cohesive-frictional soil slope. The study highlights the procedure for conducting a site-specific study using field test data such as SCPT in geotechnical analysis and demonstrates that a few additional computations involving soil variability provide a better insight into the role of variability in designs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years, spatial variability modeling of soil parameters using random field theory has gained distinct importance in geotechnical analysis. In the present Study, commercially available finite difference numerical code FLAC 5.0 is used for modeling the permeability parameter as spatially correlated log-normally distributed random variable and its influence on the steady state seepage flow and on the slope stability analysis are studied. Considering the case of a 5.0 m high cohesive-frictional soil slope of 30 degrees, a range of coefficients of variation (CoV%) from 60 to 90% in the permeability Values, and taking different values of correlation distance in the range of 0.5-15 m, parametric studies, using Monte Carlo simulations, are performed to study the following three aspects, i.e., (i) effect ostochastic soil permeability on the statistics of seepage flow in comparison to the analytic (Dupuit's) solution available for the uniformly constant permeability property; (ii) strain and deformation pattern, and (iii) stability of the given slope assessed in terms of factor of safety (FS). The results obtained in this study are useful to understand the role of permeability variations in slope stability analysis under different slope conditions and material properties. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Kachchh region of Gujarat, India bore the brunt of a disastrous earthquake of magnitude M-w=7.6 that occurred on January 26, 2001. The major cause of failure of various structures including earthen dams was noted to be the presence of liquefiable alluvium in the foundation soil. Results of back-analysis of failures of Chang, Tappar, Kaswati and Rudramata earth dams using pseudo-static limit equilibrium approach presented in this paper confirm that the presence of liquefiable layer contributed to lesser factors of safety leading to a base type of failure that was also observed in the field. Following the earthquake, earth dams have been rehabilitated by the concerned authority and it is imperative that the reconstructed sections of earth dams be reanalyzed. It is also increasingly realized that risk assessment of dams in view of the large-scale investment made and probabilistic analysis is necessary. In this study, it is demonstrated that the probabilistic approach when used in conjunction with deterministic approach helps in providing a rational solution for quantification of safety of the dam and in the estimation of risk associated with the dam construction. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method for total risk analysis of embankment dams under earthquake conditions is discussed and applied to the selected embankment dams, i.e., Chang, Tapar, Rudramata, and Kaswati located in the Kachchh region of Gujarat, India, to obtain the seismic hazard rating of the dam site and the risk rating of the structures. Based on the results of the total risk analysis of the dams, coupled non-linear dynamic numerical analyses of the dam sections are performed using acceleration time history record of the Bhuj (India) earthquake as well as five other major earthquakes recorded worldwide. The objective of doing so is to perform the numerical analysis of the dams for the range of amplitude, frequency content and time duration of input motions. The deformations calculated from the numerical analyses are also compared with other approaches available in literature, viz, Makdisi and Seed (1978) approach, Jansen's approach (1990), Swaisgood's method (1995), Bureau's method (1997). Singh et al. approach (2007), and Saygili and Rathje approach (2008) and the results are utilized to foresee the stability of dams in future earthquake scenario. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The presence of allophane minerals imparts special engineering features to the volcanic ash soils. This study examines the reasons for the allophanic soils exhibiting unusual shear strength properties in comparison to sedimentary clays. The theories of residual shear strength developed for natural soils and artificial soil mixtures and the unusual surface charge properties of the allophane particle are invoked to explain the high shear strength values of these residual soils. The lack of any reasonable correlation between phi' (effective stress-strength parameter) and plasticity index values for allophanic soils is explained on the basis of the unusual structure of the allophane particle. The reasons as to why natural soil slopes in allophanic soil areas (example, Dominica, West Indies) are stable at much steeper angles than natural slopes in sedimentary clay deposits (London clay areas) are explained in light of the hypothesis developed in this study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanical properties of clays are highly dependent not only on the stress/strain ratio to which the material is subjected but also on the chemistry of the pore fluids which in turn affects the intergranular or the effective stresses. Atterberg limits and vane shear tests were performed with different pore fluids in order to observe how the fine-grained material mechanically responded. The diffuse double layer theory has been used to interpret the data of vane shear tests in order to explain the variation of geotechnical responses with the different clays. Van der Waals forces and double layer forces were obtained and capillary forces calculated. The results show that while for kaolinite and illite the chemistry of the pore fluids has no influence on the water content and hence on the mechanical behaviour of the material, Na-smectite shows a strong correlation between the dielectric constant of the pore fluids and an increase in undrained shear strength. The data obtained extends an understanding of the influence of the dielectric constant (epsilon) of the pore fluids on the geotechnical properties of fine-grained materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Earthquakes triggered by artificial reservoirs have been documented for more than seven decades and the processes leading to this phenomenon are fairly well understood. Larger among such earthquakes are known to occur within a few years of reservoir impoundment and usually the activity decreases with time. A documented example of Reservoir Triggered Seismicity (RTS), the Idukki Reservoir in Kerala, south India, impounded in 1975, is an exception wherein the triggered activity has been revived in 2011, nearly 35 years after the initial burst of activity in 1977, two years after the dam was filled. The magnitude of the largest shock in the 2011 sequence exceeded that of the previously documented largest microearthquake. Presence of faults that are close to failure and vulnerable to increase in pore pressure due to reservoir loading or increased rainfall, or a combination of both seems to trigger shocks in this area. The renewed burst of earthquakes after a prolonged period of reduced activity at the Idukki Reservoir is a rare example of RTS. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The seismic hazard value of any region depends upon three important components such as probable earthquake location, maximum earthquake magnitude and the attenuation equation. This paper presents a representative way of estimating these three important components considering region specific seismotectonic features. Rupture Based Seismic Hazard Analysis (RBSHA) given by Anbazhagan et al. (2011) is used to determine the probable future earthquake locations. This approach is verified on the earthquake data of Bhuj region. The probable earthquake location for this region is identified considering earthquake data till the year 2000. These identified locations match well with the reported locations after 2000. The further Coimbatore City is selected as the study area to develop a representative seismic hazard map using RBSHA approach and to compare with deterministic seismic hazard analysis. Probable future earthquake zones for Coimbatore are located considering the rupture phenomenon as per energy release theory discussed by Anbazhagan et at (2011). Rupture character of the region has been established by estimating the subsurface rupture length of each source and normalized with respect to the length of the source. Average rupture length of the source with respect to its total length is found to be similar for most of the sources in the region, which is called as the rupture character of the region. Maximum magnitudes of probable zones are estimated considering seismic sources close by and regional rupture character established. Representative GMPEs for the study area have been selected by carrying out efficacy test through an average log likelihood value (LLH) as ranking estimator and considering the Isoseismal map. New seismic hazard map of Coimbatore has been developed using the above regional representative parameters of probable earthquake locations, maximum earthquake magnitude and best suitable GMPEs. The new hazard map gives acceleration values at bedrock for maximum possible earthquakes. These results are compared with deterministic seismic hazard map and recently published probabilistic seismic hazard values. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An attempt has been made to bring out the influence on strength and volume change behavior of fabric changes and new cementitious compound formation in a soil upon addition of various lime contents and with curing periods. The effects of changes in fabric of treatment with various lime contents (0, 2,4 and 6%) and with curing periods (0, 7, 14 and 28 days) have been evaluated by one-dimensional consolidation tests, in terms of void ratio changes and compressibility. The strength of soil treated with different lime contents with curing periods up to 28 days, and with the optimum lime content of 6% up to one year has been determined by unconfined compression tests. Comparison of effects of lime on the strength and volume change behavior of the soil brings out that the formation of flocculated fabric and cation exchange significantly reduces the compressibility of soil but marginally increases the strength. Cementation of soil particles and filling with cementitious compounds of the voids of flocculated fabric in the soil marginally reduces the compressibility but significantly increases the strength. Thus, the mechanism of volume change behavior of soil treated with lower lime content at short curing periods is distinctly different from that of the soil treated with optimum lime content at longer curing periods. This is consistent with the increase in the permeability caused by the addition from 2 to 4% lime and the decrease following the addition of 6% lime. Changes consistent with mechanical behavior have been determined by scanning electron microscope, X-ray diffraction and thermal analyses, energy dispersive X-ray spectrometer and pH value in microstructure, mineralogy, chemical composition and alkalinity, respectively. (C) 2015 Published by Elsevier B.V.