906 resultados para engineering design process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report shares my efforts in developing a solid unit of instruction that has a clear focus on student outcomes. I have been a teacher for 20 years and have been writing and revising curricula for much of that time. However, most has been developed without the benefit of current research on how students learn and did not focus on what and how students are learning. My journey as a teacher has involved a lot of trial and error. My traditional method of teaching is to look at the benchmarks (now content expectations) to see what needs to be covered. My unit consists of having students read the appropriate sections in the textbook, complete work sheets, watch a video, and take some notes. I try to include at least one hands-on activity, one or more quizzes, and the traditional end-of-unit test consisting mostly of multiple choice questions I find in the textbook. I try to be engaging, make the lessons fun, and hope that at the end of the unit my students get whatever concepts I‘ve presented so that we can move on to the next topic. I want to increase students‘ understanding of science concepts and their ability to connect understanding to the real-world. However, sometimes I feel that my lessons are missing something. For a long time I have wanted to develop a unit of instruction that I know is an effective tool for the teaching and learning of science. In this report, I describe my efforts to reform my curricula using the “Understanding by Designprocess. I want to see if this style of curriculum design will help me be a more effective teacher and if it will lead to an increase in student learning. My hypothesis is that this new (for me) approach to teaching will lead to increased understanding of science concepts among students because it is based on purposefully thinking about learning targets based on “big ideas” in science. For my reformed curricula I incorporate lessons from several outstanding programs I‘ve been involved with including EpiCenter (Purdue University), Incorporated Research Institutions for Seismology (IRIS), the Master of Science Program in Applied Science Education at Michigan Technological University, and the Michigan Association for Computer Users in Learning (MACUL). In this report, I present the methodology on how I developed a new unit of instruction based on the Understanding by Design process. I present several lessons and learning plans I‘ve developed for the unit that follow the 5E Learning Cycle as appendices at the end of this report. I also include the results of pilot testing of one of lessons. Although the lesson I pilot-tested was not as successful in increasing student learning outcomes as I had anticipated, the development process I followed was helpful in that it required me to focus on important concepts. Conducting the pilot test was also helpful to me because it led me to identify ways in which I could improve upon the lesson in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"AD-866 818."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AFOSR-TN-59-108; AD-210224.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Sponsored by the Institute for Materials Research of the National Bureau of Standards ... [et al.]."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is a theoretical study of the accuracy and usability of models that attempt to represent the environmental control system of buildings in order to improve environmental design. These models have evolved from crude representations of a building and its environment through to an accurate representation of the dynamic characteristics of the environmental stimuli on buildings. Each generation of models has had its own particular influence on built form. This thesis analyses the theory, structure and data of such models in terms of their accuracy of simulation and therefore their validity in influencing built form. The models are also analysed in terms of their compatability with the design process and hence their ability to aid designers. The conclusions are that such models are unlikely to improve environmental performance since: a the models can only be applied to a limited number of building types, b they can only be applied to a restricted number of the characteristics of a design, c they can only be employed after many major environmental decisions have been made, d the data used in models is inadequate and unrepresentative, e models do not account for occupant interaction in environmental control. It is argued that further improvements in the accuracy of simulation of environmental control will not significantly improve environmental design. This is based on the premise that strategic environmental decisions are made at the conceptual stages of design whereas models influence the detailed stages of design. It is hypothesised that if models are to improve environmental design it must be through the analysis of building typologies which provides a method of feedback between models and the conceptual stages of design. Field studies are presented to describe a method by which typologies can be analysed and a theoretical framework is described which provides a basis for further research into the implications of the morphology of buildings on environmental design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theprocess of manufacturing system design frequently includes modeling, and usually, this means applying a technique such as discrete event simulation (DES). However, the computer tools currently available to apply this technique enable only a superficial representation of the people that operate within the systems. This is a serious limitation because the performance of people remains central to the competitiveness of many manufacturing enterprises. Therefore, this paper explores the use of probability density functions to represent the variation of worker activity times within DES models.