762 resultados para endothelium
Resumo:
Background Damage to the corneal epithelium causes not only a reaction for its repair but also affects other parts of the cornea as well as different components of the anterior segment of the eye. The purpose of this investigation was to analyze the consequences, following epithelial and limbal damage, to the iris of rabbits (Oryctolagus cuniculus).Methods The corneal epithelium was thoroughly scraped followed by surgical excision of the limbus. Next, (3)H-thymidine ((3)H-TdR) was injected intravitreally both into the right (experimental) and left (control) eyes which had their anterior segments processed for autoradiography at intervals of 2, 7 and 21 days after surgery (three rabbits per interval). The irises were also examined with scanning-electron and confocal microscopy after Evans blue injection.Results There was a high frequency of labeling in the cells of the iris blood vessels in the experimental eye, particularly the endothelial ones. The ratio of labeled cells between experimental and control irises was 40:1, with a population of nuclei increasing by 25% and remaining labeled up to 21 days. There was also an increase in the volume of the iris vasculature as shown by confocal microscopy. The high labeling frequencies of the vascular cells were observed throughout the iris from the ciliary to the pupillary regions.Conclusions The lesions on the corneal epithelium elicit proliferation of the iris vascular cells, mainly its endothelium, as well as an early breakdown of the blood-aqueous barrier. The daughter cells resulting from the damage to the eye surface were detected up to 21 days after a single injection of (3)H-TdR, most likely due to their slow turnover. As a consequence of this proliferation, the vasculature of the iris increased in volume.
Resumo:
Foram estudados 20 olhos de 10 cães sem raça definida, machos e fêmeas com 6 anos de idade. A morfologia das células do endotélio da córnea foi analisada utilizando-se microscópio especular de contato. Foram estudadas as regiões central e periférica da córnea. de cada região da córnea foram realizadas três micrografias. de cada micrografia foram analisadas no mínimo 100 células endoteliais. Foram obtidos os valores do polimegatismo e pleomorfismo. O endotélio corneano de cães caracterizou-se por uma monocamada de células poligonais uniformes em tamanho e forma. A forma predominante das células endoteliais foi hexagonal. O índice de polimegatismo foi 0.22. Este estudo demonstrou que a morfologia das células do endotélio da córnea de cães é semelhante à observada em humanos.
Resumo:
Objetivou-se examinar a superfície posterior do endotélio corneano e realizar análise morfométrica das células endoteliais da córnea de avestruz (Struthio camelus) valendo-se da microscopia eletrônica de varredura. Avaliaram-se o número de lados, a área celular média, a densidade celular e o coeficiente de variação da área celular. O endotélio corneano de avestruz constitui-se de células poligonais uniformes em tamanho e forma, e com poucas interdigitações das bordas celulares. Visibilizaram-se microvilosidades na superfície celular. A área celular média foi de 269±18µm² e a densidade celular foi de 3717±240 células mm-2. O coeficiente de variação foi de 0,06 e o percentual de células hexagonais de 75%. Não foram observadas diferenças significativas entre os parâmetros avaliados entre os olhos esquerdo e direito. Este estudo demonstrou que o endotélio corneano de avestruz é semelhante ao descrito em outros vertebrados.
Resumo:
The objective of this study was to examine the endothelial surface morphology and to perform morphometric analysis of the corneal endothelial cells of Yacare caiman (Caiman yacare) using scanning electron microscopy. Morphometric analysis with regard to polygonality, mean cell area, cell density and coefficient of variation of mean cell area was performed. Cell areas were measured using image analysis software. The normal corneal endothelium of Yacare caiman consisted of polygonal cells of uniform size and shape with interdigitations of the cell borders. Microvilli appeared as protrusions on the cellular surface. The average cell area was 270 +/- 24 mum(2) and the endothelial cell density was 3704 +/- 324 cells/mm(2). The coefficient of variation of cell area was 0.22. This study demonstrates that the Yacare caiman corneal endothelium is similar to those described in other vertebrates.
Resumo:
1. The objective was to determine whether nitric oxide participates in stress adaptive responses. Acute stress (AS) decreased endothelium-dependent vasoconstriction to noradrenaline (NA) in rat aorta [control rat (CR) 3.90+/-0.18, n=22; AS 2.76+/-0.20, n=13; P<0.05].2. Chronic stress exposure previous to AS (CS) potentiated this effect [CS 1.93+/-0.19; n=9; P<0.05 related to CR, P<0.05 related to AS].3. Methylene blue and N-G monomethyl-L-arginine, but not indomethaein, restored the decreased aorta reactivity to NA. 4. No reactivity alteration was observed in aorta without endothelium either in both stress conditions or in the presence of inhibitors. These data show that the nitric oxide participates in stress responses. (C) 1998 Elsevier B.V.
Resumo:
Annexin 1 (ANX-A1) exerts antimigratory actions in several models of acute and chronic inflammation, This is related to its ability to mimic the effect of endogenous ANX-A1 that is externalized on neutrophil adhesion to the postcapillary endothelium. In the present study we monitored ANX-A1 expression and localization in intravascular and emigrated neutrophils, using a classical model of rat peritonitis, For this purpose, a pair of antibodies raised against the ANX-A1 N-terminus tie, able to recognize intact ANX-A1) or the whole protein tie, able to interact with all ANX-A1 isoforms) was used by immunofluorescence and immunocytochemistry analyses. The majority (similar to 50%) of ANX-A1 on the plasma membrane of intravascular neutrophils was intact. Extravasation into the subendothelial matrix caused loss of this pool of intact protein (to similar to6%), concomitant with an increase in total amount of the protein; only similar to 25% of the total protein was now recognized by the antibody raised against the N-terminus tie, it was intact). In the cytoplasm of these cells, ANX-A1 was predominantly associated with large vacuoles, possibly endosomes, In situ hybridization confirmed de novo synthesis of ANX-A1 in the extravasated cells. In conclusion, biochemical pathways leading to the externalization, proteolysis, and synthesis of ANX-A1 are activated during the process of neutrophil extravasation.
Resumo:
The corneal endothelium is essential for the maintenance of the corneal transparency. The aim of this study was to examine the morphology of the endothelial surface and perform morphometric analysis of the normal corneal endothelial cells of the Magellanic penguin (Spheniscus magellanicus) using scanning electron microscopy. The present work demonstrates that the corneal endothelium of the Magellanic penguin is similar to those described in other vertebrates. Copyright 2005 by American Association of Zoo Veterinarians.
Resumo:
Background: Cardiovascular diseases remain leaders as the major causes of mortality in Western society. Restoration of the circulation through construction of bypass surgical treatment is regarded as the gold standard treatment of peripheral vascular diseases, and grafts are necessary for this purpose. The great saphenous vein is often not available and synthetic grafts have their limitations. Therefore, new techniques to produce alternative grafts have been developed and, in this sense, tissue engineering is a promising alternative to provide biocompatible grafts. This study objective was to reconstruct the endothelium layer of decellularized vein scaffolds, using mesenchymal stem cells (MSCs) and growth factors obtained from platelets. Methods: Fifteen nonpregnant female adult rabbits were used for all experiments. Adipose tissue and vena cava were obtained and subjected to MSCs isolation and tissue decellularization, respectively. MSCs were subjected to differentiation using endothelial inductor growth factor (EIGF) obtained from human platelet lysates. Immunofluorescence, histological and immunohistochemical analyses were employed for the final characterization of the obtained blood vessel substitute. Results: The scaffolds were successfully decellularized with sodium dodecyl sulfate. MSCs actively adhered at the scaffolds, and through stimulation with EIGF were differentiated into functional endothelial cells, secreting significantly higher quantities of von Willebrand factor (0.85 μg/mL; P < .05) than cells cultivated under the same conditions, without EIGF (0.085 μg/mL). Cells with evident morphologic characteristics of endothelium were seen at the lumen of the scaffolds. These cells also stained positive for fascin protein, which is highly expressed by differentiated endothelial cells. Conclusions: Taken together, the use of decellularized bioscaffold and subcutaneous MSCs seems to be a potential approach to obtain bioengineered blood vessels, in the presence of EIGF supplementation. © 2013 Society for Vascular Surgery.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Endothelial dysfunction has been implicated in portal vein obstruction, a condition responsible for major complications in chronic portal hypertension. Increased vascular tone due to disruption of endothelial function has been associated with an imbalance in the equilibrium between endothelium-derived relaxing and contracting factors. Herein, we assessed underlying mechanisms by which expression of bradykinin B-1 receptor (B1R) is induced in the endothelium and how its stimulation triggers vasoconstriction in the rat portal vein. Prolonged in vitro incubation of portal vein resulted in time- and endothelium-dependent expression of B1R and cyclooxygenase-2 (COX-2). Inhibition of protein kinase C (PKC) or phosphatidylinositol 3-kinase (PI3K) significantly reduced expression of B1R through the regulation of transcription factors, activator protein-1 (AP-1) and cAMP response element-binding protein (CREB). Moreover, pharmacological studies showed that B1R-mediated portal vein contraction was reduced by COX-2, but not COX-1, inhibitors. Notably, activation of endothelial B1R increased phospholipase A(2)/COX-2-derived thromboxane A(2) (TXA(2)) levels, which in turn mediated portal vein contraction through binding to TXA(2) receptors expressed in vascular smooth muscle cells. These results provide novel molecular mechanisms involved in the regulation of B1R expression and identify a critical role for the endothelial B1R in the modulation of portal vein vascular tone. Our study suggests a potential role for B1R antagonists as therapeutic tools for diseases where portal hypertension may be involved. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Cerebral amyloid angiopathy (CAA) is an age-associated disease characterized by amyloid deposition in cerebral and meningeal vessel walls. CAA is detected in the majority of the individuals with dementia and also in a large number of non-demented elderly individuals. In addition, CAA is strongly associated with Alzheimer's disease (AD) pathology. Mechanical consequences including intra-cerebral or subarachnoid hemorrhage remains CAA most feared complication, but only a small fraction of CAA results in severe bleeding. On the hand the non-mechanical consequences in cerebrovascular regulation are prevalent and may be even more deleterious. Studies of animal models have provided strong evidence linking the vasoactive A beta 1-40, the main species found in CAA, to disturbances in endothelial-dependent factors, disrupting cerebrovascular regulation Here, we aimed to review experimental findings regarding the non-mechanical consequences of CAA for cerebrovascular regulation and discuss the implications of these results to clinical practice. (C) 2012 Elsevier Inc. All rights reserved.