964 resultados para elliptical monopole antennas
Resumo:
Many conventional statistical machine learning al- gorithms generalise poorly if distribution bias ex- ists in the datasets. For example, distribution bias arises in the context of domain generalisation, where knowledge acquired from multiple source domains need to be used in a previously unseen target domains. We propose Elliptical Summary Randomisation (ESRand), an efficient domain generalisation approach that comprises of a randomised kernel and elliptical data summarisation. ESRand learns a domain interdependent projection to a la- tent subspace that minimises the existing biases to the data while maintaining the functional relationship between domains. In the latent subspace, ellipsoidal summaries replace the samples to enhance the generalisation by further removing bias and noise in the data. Moreover, the summarisation enables large-scale data processing by significantly reducing the size of the data. Through comprehensive analysis, we show that our subspace-based approach outperforms state-of-the-art results on several activity recognition benchmark datasets, while keeping the computational complexity significantly low.
Resumo:
The angular-momentum flux from an inspiralling binary system of compact objects moving in quasi-elliptical orbits is computed at the third post-Newtonian (3PN) order using the multipolar post-Minkowskian wave generation formalism. The 3PN angular-momentum flux involves the instantaneous, tail, and tail-of-tails contributions as for the 3PN energy flux, and in addition a contribution due to nonlinear memory. We average the angular-momentum flux over the binary's orbit using the 3PN quasi-Keplerian representation of elliptical orbits. The averaged angular-momentum flux provides the final input needed for gravitational-wave phasing of binaries moving in quasi-elliptical orbits. We obtain the evolution of orbital elements under 3PN gravitational radiation reaction in the quasi-elliptic case. For small eccentricities, we give simpler limiting expressions relevant for phasing up to order e(2). This work is important for the construction of templates for quasi-eccentric binaries, and for the comparison of post-Newtonian results with the numerical relativity simulations of the plunge and merger of eccentric binaries.
Resumo:
Fractal Minkowski curves to design a compact dual-frequency microstrip ring antenna are proposed. Sides of a square ring have been selectively replaced with first and second iterations of the generalised fractal geometry to design a smaller antenna with dual-frequency operation. This behaviour has been explained based on current distributions on the antenna structure. Measured results compare well with electromagnetic simulations.
Resumo:
Micromachined antennas are recieving great interest as carrier frequencies move higher into the frequency spectrum due to their superior performance and amenability for integration with active devices. However their design is cumbersome owing to the complexity of the structure. To overcome this, in this paper, an iterative procedure is suggested to facilitate fast design of micromachined patch antennas based on a simulation study. A microstrip line on a micromachined Silicon substrate is simulated in a full wave simulator by solving for the ports only. From the obtained propagation constant, the effective dilectric constant for the micromachined substrate is estimated. The process is repeated for a number of values of the width of the microstrip and a plot is made for the variation of the effective dielectric constant with the microstrip width. Then an iterative method in combination with the extrapolated permittivity which includes the effect of cavity extensions in all the directions, is used to obtain the width and the corresponding effective dielectric constant. This method has been verified to be quite accurate by comparison with full wave simulations and hence it can function as a good starting point for designers to design micromachined antennas.
Resumo:
This paper describes a predictive model for breakout noise from an elliptical duct or shell of finite length. The transmission mechanism is essentially that of ``mode coupling'', whereby higher structural modes in the duct walls get excited because of non-circularity of the wall. Effect of geometry has been taken care of by evaluating Fourier coefficients of the radius of curvature. The noise radiated from the duct walls is represented by that from a finite vibrating length of a semi infinite cylinder in a free field. Emphasis is on understanding the physics of the problem as well as analytical modeling. The analytical model is validated with 3-D FEM. Effects of the ovality, curvature, and axial terminations of the duct have been demonstrated. (C) 2010 Institute of Noise Control Engineering.
Resumo:
A Space-Time Block Code (STBC) in K-variables is said to be g-Group ML-Decodable (GMLD) if its Maximum-Likelihood (ML) decoding metric can be written as a sum of g independent terms, with each term being a function of a subset of the K variables. In this paper, a construction method to obtain high-rate, 2-GMLD STBCs for 2(m) transmit antennas, m > 1, is presented. The rate of the STBC obtained for 2(m) transmit antennas is 2(m-2) + 1/2(m), complex symbols per channel use. The design method is illustrated for the case of 4 and 8 transmit antennas. The code obtained for 4 transmit antennas is equivalent to the rate-5/4 Quasi-Orthogonal design (QOD) proposed by Yuen, Guan and Tjung.
Resumo:
The design and analysis of a coplanar capacitive fed microstrip antenna suspended above the ground plane is presented. It is demonstrated that the proposed approach can be used for designing antennas with impedance bandwidth of about 50% and a good gain to operate in various microwave bands. The model of the antenna incorporates the capacitive feed strip which is fed by a coaxial probe using equivalent circuit approach, and matches simulation and experimental results. The capacitive feed strip used here is basically a rectangular microstrip capacitor formed from a truncated microstrip transmission line and all its open ends are represented by terminal or edge capacitances. The error analysis was carried out for validity of the model for different design parameters. The antenna configuration can be used where unidirectional radiation patterns are required over a wide bandwidth.
Resumo:
The broadband behaviour of a three-layer electromagnetically coupled circular microstrip antenna is investigated experimentally. The effects of interlayer spacings and the thickness of the parasitic layers on the impedance bandwidth, 3 dB beamwidth and pattern shape, are studied. Experiments show that this structure can provide a frequency bandwidth as high as 20% with a low crosspolarisation level and a moderately high gain.
Resumo:
A Geodesic Constant Method (GCM) is outlined which provides a common approach to ray tracing on quadric cylinders in general, and yields all the surface ray-geometric parameters required in the UTD mutual coupling analysis of conformal antenna arrays in the closed form. The approach permits the incorporation of a shaping parameter which permits the modeling of quadric cylindrical surfaces of desired sharpness/flatness with a common set of equations. The mutual admittance between the slots on a general parabolic cylinder is obtained as an illustration of the applicability of the GCM.
Resumo:
The pulsatile flow of an incompressible viscous fluid in an elliptical pipe of slowly varying cross-section is considered. Asymptotic series solutions for the velocity distribution and pressure gradient are obtained in terms of Mathieu functions for a low Reynold number flow in which the volume flux is prescribed. An expression for shear stress on the boundary is derived. The physically significant quantities governing the flow are computed numerically and analysed for different types of constrictions. The effect of eccentricity and Womerslay parameter on the flow is discussed.
Resumo:
Elliptical conformal transformation was used to derive closed form expressions for the equivalent circuit series inductance and shunt capacitance per period of a serpentine folded-waveguide slow-wave structure including the effects of the beam-hole. The lumped parameters were subsequently interpreted for the dispersion and interaction impedance characteristics of the structure. The analysis was benchmarked for two typical millimeter-wave structures operating in Ka- and W-bands, against measurement, 3D electromagnetic modeling using CST Microwave Studio, parametric analysis and equivalent circuit analysis. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Short elliptical chamber mufflers are used often in the modern day automotive exhaust systems. The acoustic analysis of such short chamber mufflers is facilitated by considering a transverse plane wave propagation model along the major axis up to the low frequency limit. The one dimensional differential equation governing the transverse plane wave propagation in such short chambers is solved using the segmentation approaches which are inherently numerical schemes, wherein the transfer matrix relating the upstream state variables to the downstream variables is obtained. Analytical solution of the transverse plane wave model used to analyze such short chambers has not been reported in the literature so far. This present work is thus an attempt to fill up this lacuna, whereby Frobenius solution of the differential equation governing the transverse plane wave propagation is obtained. By taking a sufficient number of terms of the infinite series, an approximate analytical solution so obtained shows good convergence up to about 1300 Hz and also covers most of the range of muffler dimensions used in practice. The transmission loss (TL) performance of the muffler configurations computed by this analytical approach agrees excellently with that computed by the Matrizant approach used earlier by the authors, thereby offering a faster and more elegant alternate method to analyze short elliptical muffler configurations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper is on the design and performance analysis of practical distributed space-time codes for wireless relay networks with multiple antennas terminals. The amplify-andforward scheme is used in a way that each relay transmits a scaled version of the linear combination of the received symbols. We propose distributed generalized quasi-orthogonal space-time codes which are distributed among the source antennas and relays, and valid for any number of relays. Assuming M-PSK and M-QAM signals, we derive a formula for the symbol error probability of the investigated scheme over Rayleigh fading channels. For sufficiently large SNR, this paper derives closed-form average SER expression. The simplicity of the asymptotic results provides valuable insights into the performance of cooperative networks and suggests means of optimizing them. Our analytical results have been confirmed by simulation results, using full-rate full-diversity distributed codes.